PC - Lycée Dumont D’Urville

Correction DS4

I. Michelson

1. Lg est composé d'une lame semi-réfléchissante composée d’une lame de verre d’épaisseur d et d’indice n
sur laquelle on a réalisé un dépot métallique: c’est la lame séparatrice, et d’'une lame de verre d’épaisseur d
et d’indice n appelée compensatrice. La lame semi-réfléchissante introduit une différence de marche entre les
rayons qui ne suivent pas le méme chemin dans 'interférometre, la lame compensatrice est la pour introduire
une différence de marche qui compense celle présente a cause de la séparatrice.

2. On trace le symétrique S’ de S par L (c’est 'image de S par le miroir de la lame semi réfléchissante),
on en déduit le rayon réfléchie sur L;. On trace le symétrique de S’ par Ms et on en déduit le rayon réfléchi
sur le miroir Mo.

Le rayon qui traverse la lame semi-réfléchissante est réfléchi sur M; en passant par S}, image de S par M,
ou encore symétrique de S par le plan de M;. Ensuite le rayon réfléchi sur M; se réfléchit sur la lame semi
réfléchissante, on trouve ce rayon grace a S; image de S; par la lame semi réfléchissante.

n

3. Les rayons sortent paralleles entre eux du Michelson. On trace le rayon auxiliaire parallele a ces deux
rayons et passant par le centre de la lentille (c’est le rayon que j’appelle le rayon magique). Les trois rayons
paralleles entre eux convergent sur 1’écran en un foyer image secondaire.

4. Les franges sont des cercles, appelés franges d’égale inclinaison. Elles sont localisées a 'infini.

5. Les rayons qui convergent en C sont ceux issus i
de S passant par Ox. La différence de marche entre le
ces deux rayons est § = 2e. M2 S
H—H)—(&%
S
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¥
C
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6. Les ordres d’interférences s’écrivent py = SV do1 et po = S 00s.
1 2

7. Chaque longueur d’onde donne son propre systeme de franges et a I’écran on observe la superposition
de ces deux systémes de franges. Lorsque les franges brillantes d’un systéme (par exemple p; entier) se
superposent aux franges sombres de l'autre systéme (par exemple ps demi entier), on observe un écran
uniformément éclairé, les franges ne sont plus visibles, on dit qu’il y a brouillage.
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On a donc brouillage pour p; — ps = k + 3 ou k est un entier relatif. Ou encore 2ex(o1 — 02) = k + 3 soit
k+3  k+3
2001 —03) 2A0

€L =

1
On en déduit donc D, = ex11 — e, = % =1,39 cm.
o

8. Pour e = 0, c’est le contact optique. Pour ey, on observe le premier brouillage, pour es, le second
brouillage... et pour eg le 6 ieme brouillage. D’apres ’énonce eg — e; = 1_6(;) soit Ly = 160(eg — €1) =
160.5D, = 11,1 m.

9. Un rayon lumineux entre sa transmission sur le verre semi-argenté et sa réflexion, parcourt une demi
diagonale puis 7 diagonales, la longueur d’un bras du Michelson est donc 7,5 fois la diagonale de longueur
approchée /1102 + 1302 = 170 em. Donc Lg = 7,5.170 = 12,8 m: c’est de l'ordre de grandeur des 11
metres trouvés précédemment.

10. M1
10.a. Le rayon incident donne naissance a 0

un rayon réfléchi sur M; et un rayon réfléchi sur Mj. M2

Les rayons interferent en I, le rayon réfléchi sur My

parcourt la distance 2AI = 2ztana en plus. La

différence de marche est donc d(x) = 2z tan o =~ 2ax.

rayon réfléchi
sur M2

rayon
. Lo N réfléchi
L’interfrange s’écrit ¢ = xx41 — xx ou xy est la po- sur M1

sition de la frange brillante d’ordre k définie par
() = 2%%E _ b don 2 = . On en déduit
plE) = —— = ot 7z = 5. On en dédui

donc ¢ = —.
2x

10.b. Lalentille réalise 'image du miroir sur ——mircle
I’écran car les franges sont localisées sur les miroirs,
on cherche a les observer avec un interfrange plus SN S
grand sur l’écran. Sur I’écran on voit les mémes
franges rectilignes que sur les miroirs mais |y| fois
plus grand, ou v est le grandissement de la lentille.

écran

__— . OAf
On a OA = —38 c¢m et on applique la relation de conjugaison pour trouver OA’ soit OA’ = T—i—ff’ =

OA
142,5 ¢m. On en déduit le grandissement v = —— = —4 soit 'interfrange sur les miroirs est 4 fois plus

OA

petit que l'interfrange sur I’écran.

A i A

i = — = —=0,325 em dott v = — = 9,7.107° rad.
20 4 2%,

10.c. En lumiére blanche, chaque longueur d’onde de la source donne son propre systeme de franges

et les sources de longueurs d’onde différentes étant non cohérentes, on observe a 1’écran la superposition de

tous les systemes de franges. En un point des miroirs certaines longueurs d’onde donnent des franges sombres

2
qui donnent des cannelures dans le spectre soit a résoudre p(z) = % = k demi entier.
. . 2ax 2ax
Pour résoudre on fait un encadrement de p: =5,8<p< = 9,7 en prenant A\, = 450 nm
max min
(pour le bleu) et Az = 750 nm (pour le rouge). Il y a donc 4 cannelures qui correspondent & p =

6,5—7,5—8,5-09,5.



II. Diffusion de neutrons

— 0
1. La loi de Fick s’écrit j_D> = —Dgrad n(r,t) = —D—ne—Z. Cette loi traduit que la diffusion se fait des

fortes vers les faibles densités et qu’elle est d’autant plus efficace que le coefficient de diffusion est grand et
que les inhomogénéités de densités sont importantes.

2.

2.a. Le volume compris entre les cylindres
de rayons r et r + dr s’écrit dr = 2nrLdr (surface du
petit cylindre fois I’épaisseur).

jD(r+dr,t)

systeme

2.b. Le nombre de neutrons qui entrent dans le systeme est le nombre de neutrons qui traversent
le cylindre de rayon r soit N, = jp(r, t)27rLdt.

Le nombre de neutrons qui sortent du systeme est le nombre de neutrons qui traversent le cylindre de rayon
r + dr soit 6N = jp(r + dr,t)27(r + dr)Ldt.

Le nombre de neutrons dans le systéme a l'instant ¢ est N (t) = n(r, t)27wrLdr.

Le nombre de particules dans le systeéme a Uinstant ¢ + dt est N(t + dt) = n(r,t + dt)27rLdr .
Le nombre de neutrons absorbés par le matériau entre ¢ et t + dt est § Ngps = K27mrLdrdt.

La conservation du nombre de neutrons s’écrit N(t 4+ dt) — N(t) = 0Ne — 0Ng + I Nyps.

d’ou n(r,t + dt — n(r,t))2nrLdr = —(jp(r + dr,t)(r + dr) — jp(r,t)r)2w Ldt — K 27r Ldrdt.
9(jp(r,t)r)

r

avec dt et dr petits on fait les DL: %27T7°Ldrdt =— 2w Ldrdt — K2mrLdrdt.

., On _ 10(jp(r,t)r)
19Gp(rt)r)
r or

Oip(r,t Kr? Kr B
W = — K soit en primitivant jp(r,t)r = _TT + B ou encore jp(r,t) = _Ar, 5
r

2 r
En r =0, jp diverge. Il faut donc prendre B = 0 pour que jp soit défini en tout point.

K
On a donc jp(r) = —TT.

dn _ jp  Kr . | . .
Ona%— D—+2Ddapres1a101deF1ck.

0
3. En régime stationnaire 8_7; = 0 soit =-—-K.

On a donc

Kr?
On primitive pour trouver n soit n(r) = 1D +C.
On trouve la constante C' en utilisant la condition aux limites données par 1’énoncé n(r = Ry1) = n1 =

KR

C.
4D +
K(r* — R?)

Onad = —

n a donc n(r) =n; + D

. .. , . KR?) s
4. La densité de neutrons est minimale sur ’axe du cylindre en » = 0, on a Ny = N1 — 1D Une densité
R? 4D

est positive soit il faut ny > 4D1 ou encore K < R;l'



ITI. Correction: séchage des sols

1. Il y a évaporation lorsque les molécules d’eau liquide du sol se transforment en vapeur. Cela se produit
lorsque P.,: est inférieure & la pression de vapeur saturante. En effet, lorsque la pression en vapeur d’eau
est plus faible que Psgt, des molécules d’eau liquide se vaporisent pour augmenter la pression de la vapeur
d’eau pour atteindre la valeur de la pression a 1’équilibre, Psq:(T).

2. Le vent chasse les molécules d’eau vapeur qui sont a la surface du sol, ainsi il y a moins de molécules
d’eau vapeur, et I’évaporation augmente pour former de nouvelles molécules d’eau vapeur pour augmenter

la pression de vapeur d’eau pour qu’elle atteigne sa valeur a ’équilibre Ps,;(T"). Ainsi le sol séche plus vite.

3. La loi de Fick s’écrit j_D> = —-D Wi n ou j_D> est le vecteur densité de courant de particules en
particules.m™2.s1, n est la densité particulaire ou le nombre de particules par unité de volume en particules.m™
et D est le coefficient de diffusion en m?.s~*

3

I

d
Le flux de particules s’écrit ¢s(z) = jp(z,t)S = —D%S d’apres la loi de Fick.
z
4. On considere le systeme élémentaire de surface S 0z A .
compris entre z et z + dz. En régime stationnaire, iD(z+dz)
le nombre de molécules d’eau qui entrent dans ce zhdz)-
systéme est égal au nombre de molécules d’eau qui Sysfeme
en sortent entre ¢t et ¢ + dt. On a donc ¢g(z)dt = iD(2)
¢s(z + dz)dt ainsi ¢g ne dépend pas de z. z| _
dn dn —4s . —
5. On a ¢g = —D%S = constante donc % = D5 On primitive: nyep(z) = DS +C. On
—psz
trouve la constante C' en appliquant la condition aux limites nyep(zm) = %Ssm + C. On en déduit
—¢s(z—z
nvap(z) = % + nvap(zm)-

6. OnaP(z= zy) = Psut(T). Orlavapeur d’eau est un GP donc on peut appliquer P(z = 2,) = Pyay(1) =
nRT

ot n est le nombre de moles de vapeur d’eau et n,qp est le nombre de molécules d’eau par unité de

a va m T . Psa T a
volume on a donc nyep = % soit P(z = zm) = Psat(1) = % 801t Nyap(2m) = %T)N'
. . _(bS(Z - Zm) Psat(T)Na
7. lace dans I’ de nyq va = .
On remplace dans Pexpression de nyqp(2) SOit Myap(2) DS + T
= H)RT
On applique la loi des GP en z = H soit P(z = H) = % avec n(z = H) est le nombre de moles
Npap(z = H) Nyap(z = H)RT

Vv
d’eau en z = H soit comme précédemment n(z = H) = donc P(z = H) =

a Na
o o _¢S(H - Zm) Psat(T)Na
avec Nygp(z = H) = TS + "7
On obtient donc P(z = H) = —%—5gm + Poat (T).

8. A linterface air-sol soit en z = H, la pression de vapeur d’eau est continue soit P(z = H) = Py =
(bs(H — Zm)RT . . (Psat (T) - Pext)NaDS
— e 4 P, (T), déduit =
NoDs T Pear(T); on en déduit ¢s (H — 2)RT

9. Le nombre de molécules d’eau qui traversent la surface S en z = z,,, entre t et t + dt est égal & ¢pgdt.

Ces molécules d’eau viennent de la zone sol mouillé dans laquelle ces molécules sous forme de liquide se sont
vaporisées. A linstant ¢, I'interface sol mouillé-sol sec se trouve en z,, et A Uinstant ¢ + dt, I'interface sol
mouillé-sol sec se trouve en z,, + dz,, (avec dz,, < 0 car Uinterface descend). Ainsi le volume —Sdz,, est
initialement occupé par de I’eau sous forme liquide, ce volume contient n;q(—Sdz,,) molécules d’eau sous
forme liquide qui deviennent vapeur.

dz s .
T = ¢ < 0: car z,, diminue au cours du temps.

dt nliqS
De plus la diffusion est importante, plus il y a de molécules d’eau qui se vaporisent et donc le sol seche plus
rapidement soit z,, diminue plus vite (¢g est au numérateur).

On a donc ¢gdt = nyq(—Sdz,,) d’on

De méme plus il y a de molécules d’eau liquide dans le sol mouillé, plus ce sera long pour sécher le sol, donc
zm varie lentement quand ny;, est grand.
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10. On combine les deux équations: — = —
dt nliqS
_ (Psat(T) - Pext)NaD
(H — z)RTnyg

Pour trouver le temps de séchage, on sépare les variables et on integre entre t = 0 olt 2z, = H et t = Tsechage
ou z,, = 0. Soit:

(PSat(T) - Pemt)NaDS dZ .
(H —2m)RT On a donc pr

et g5 =

0 Ts
sa ELE D echa_;e
/(zm—H)dzm:( (1) BT tJNa
H Niiq
Tsechage
avec / dt = Tsechage
0
0 2 2 2
H H
avec / (zm — H)dzpy, = [Z_m —HzplY =0—(=— - H?) =
H 2 2 2
RTnlqu

On obtient donc pour temps de séchage Tscchage = 2(Pyqit(T) — Pogt)NuD'
sat - Lext a



IV. Turbine a gaz

1. On écrit les réactions de combustion du méthane et du fuel:
CHy + 205 — COs + 2H50

Ci6Hs2 + 2402 — 16C0O2 + 16 H20

Une mole de fuel, produit par sa combustion & une énergie de 7 600 kJ et a un dégagement de 16 moles de
COs.

Une mole de méthane, produit par sa combustion a une énergie de 803 kJ et a un dégagement d’une mole
de COs.

Je cherche le nombre de moles de méthane qui produit la méme énergie que la combustion d’une mole de

7600
fuel. 1II faut 803 9,5 moles de méthane pour produire la méme énergie qu'une mole de fuel. D’apres
la réaction de combustion, 9,5 moles de méthane produisent 9,5 moles de CO3, ce qui est inférieur aux 16

moles de CO5 produites par le fuel.

Ainsi la combustion du méthane produit moins de COy que la combustion du fuel pour une méme énergie
libérée.

2. On place le point 3 sur la courbe de rosée a 1 bar et le point 4 sur la courbe d’ébullition a 1 bar.

Les points 1 et 2 sur 'isobare 10 bars.

La transformation 2-3 dans la turbine est adiabatique (pas d’entropie échangée) et réversible (pas d’entropie
créée), elle est donc isentropique.

La transformation 4-1 est isenthalpique.

Point 1 Point 2 Point 3 Point 4
T (°C) 100 410 100 100
P (bar) 10 10 1 1
Etat liquide | vapeur seche | vapeur saturante x, = 1 | liquide saturant x; = 1
h(kJkg™? 410 3300 2700 410
so,-:\;,;a 250 350\” 450 Température (°C)
0 (100) 200 300 (400
1000 < \ "
[ P i
00 -‘-{h\’ A7 Entropie
b o PONYEU 75 paang
Pression L [V fgp PE:
(bar) oo bt /- ML || 85
1 —— e :
Iy et 3 I8 (F j: ;5
0,1 A L7h
G
0,01 4

o "9s00 1000 1500 2000 250093000 500

Enthalpie massique (kJ.kg™")

3. On applique le premier principe industriel dans la turbine soit pour la transformation 2-3 qui est adia-
batique soit: hs — hy = Wy 23 + @23 = Wy SOt Wy = —600 kJ.kg~—' < 0: le fluide donne du travail pour
faire tourner la turbine.

On applique le premier principe industriel dans le générateur de vapeur, transformation 1-2, il ne comprend
pas de piece mobile donc le travail utile est nul soit: ho—h; = wy,12+q12 = gav soit ggv = +2890 kJkg™' >
0: le fluide regoit du transfert thermique pour étre vaporisé (contact avec la source chaude).

On applique le premier principe industriel dans le condenseur, transformation 3-4, il ne comprend pas de
picce mobile donc le travail utile est nul soit: hy — ha = Wy, 34 + ¢34 = Geond 501t Geond = —2290 kJkg™' > 0:
le fluide donne du transfert thermique en se condensant (contact avec la source froide).



source chaude
(générateur
de vapeur)

qc:qGV>0//
w=wuT<0
fluide du
< moteur

gf=qcond<0

source froide
(condenseur)

Le rendement de ce moteur est défini par I’énergie

. P . . —WyT
produite sur I’énergie couteuse soit r = —— =

qcv
0,21.

4. La turbine a un rendement de 100 % donc la puissance mécanique qu’elle regoit (celle qui lui donne le
fluide soit P,r) et la puissance électrique de la turbine sont égales.

Pelec
|qu|

On a donc Pejee = Do |wyr| soit Dy, =

=0,42 kg.s L.



