
PC - Lycée Dumont D’Urville

Correction DS4
I. Michelson

1. Ls est composé d’une lame semi-réfléchissante composée d’une lame de verre d’épaisseur d et d’indice n

sur laquelle on a réalisé un dépôt métallique: c’est la lame séparatrice, et d’une lame de verre d’épaisseur d
et d’indice n appelée compensatrice. La lame semi-réfléchissante introduit une différence de marche entre les
rayons qui ne suivent pas le même chemin dans l’interféromètre, la lame compensatrice est là pour introduire
une différence de marche qui compense celle présente à cause de la séparatrice.

2. On trace le symétrique S′ de S par Ls (c’est l’image de S par le miroir de la lame semi réfléchissante),
on en déduit le rayon réfléchie sur Ls. On trace le symétrique de S′ par M2 et on en déduit le rayon réfléchi
sur le miroir M2.

Le rayon qui traverse la lame semi-réfléchissante est réfléchi sur M1 en passant par S′

1, image de S par M1

ou encore symétrique de S par le plan de M1. Ensuite le rayon réfléchi sur M1 se réfléchit sur la lame semi
réfléchissante, on trouve ce rayon grâce à S1 image de S1 par la lame semi réfléchissante.

3. Les rayons sortent parallèles entre eux du Michelson. On trace le rayon auxiliaire parallèle à ces deux
rayons et passant par le centre de la lentille (c’est le rayon que j’appelle le rayon magique). Les trois rayons
parallèles entre eux convergent sur l’écran en un foyer image secondaire.

4. Les franges sont des cercles, appelés franges d’égale inclinaison. Elles sont localisées à l’infini.

5. Les rayons qui convergent en C sont ceux issus
de S passant par Ox. La différence de marche entre
ces deux rayons est δ = 2e.

M1

M2

C

S

M’1

e

6. Les ordres d’interférences s’écrivent p1 =
δ

λ1
= δσ1 et p2 =

δ

λ2
= δσ2.

7. Chaque longueur d’onde donne son propre système de franges et à l’écran on observe la superposition
de ces deux systèmes de franges. Lorsque les franges brillantes d’un système (par exemple p1 entier) se
superposent aux franges sombres de l’autre système (par exemple p2 demi entier), on observe un écran
uniformément éclairé, les franges ne sont plus visibles, on dit qu’il y a brouillage.
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On a donc brouillage pour p1 − p2 = k +
1

2
où k est un entier relatif. Ou encore 2ek(σ1 − σ2) = k +

1

2
soit

ek =
k + 1

2

2(σ1 − σ2)
=

k + 1
2

2∆σ
.

On en déduit donc De = ek+1 − ek =
1

2σ
= 1, 39 cm.

8. Pour e = 0, c’est le contact optique. Pour e1, on observe le premier brouillage, pour e2, le second

brouillage... et pour e6 le 6 ième brouillage. D’après l’énonce e6 − e1 =
L0

160
soit L0 = 160(e6 − e1) =

160.5De = 11, 1 m.

9. Un rayon lumineux entre sa transmission sur le verre semi-argenté et sa réflexion, parcourt une demi
diagonale puis 7 diagonales, la longueur d’un bras du Michelson est donc 7, 5 fois la diagonale de longueur

approchée
√

1102 + 1302 = 170 cm. Donc L0 = 7, 5.170 = 12, 8 m: c’est de l’ordre de grandeur des 11
mètres trouvés précédemment.

10.

10.a. Le rayon incident donne naissance à
un rayon réfléchi sur M1 et un rayon réfléchi sur M ′

2.
Les rayons interfèrent en I, le rayon réfléchi sur M1

parcourt la distance 2AI = 2x tanα en plus. La
différence de marche est donc δ(x) = 2x tanα ≈ 2αx.

L’interfrange s’écrit i = xk+1 − xk où xk est la po-
sition de la frange brillante d’ordre k définie par

p(x) =
2αxk

λ
= k d’où xk =

kλ

2α
. On en déduit

donc i =
λ

2α
.

Oxx0

α

M’1

M2

rayon 
réfléchi
sur M’1

rayon réfléchi
sur M2

I

A

10.b. La lentille réalise l’image du miroir sur
l’écran car les franges sont localisées sur les miroirs,
on cherche à les observer avec un interfrange plus
grand sur l’écran. Sur l’écran on voit les mêmes
franges rectilignes que sur les miroirs mais |γ| fois
plus grand, où γ est le grandissement de la lentille.

O

A

A’

miroir 
   M2

écran

On a OA = −38 cm et on applique la relation de conjugaison pour trouver OA′ soit OA′ =
OA.f ′

OA+ f ′
=

142, 5 cm. On en déduit le grandissement γ =
OA′

OA
= −4 soit l’interfrange sur les miroirs est 4 fois plus

petit que l’interfrange sur l’écran.

im =
λ

2α
=

ie

4
= 0, 325 cm d’où α =

λ

2im
= 9, 7.10−5 rad.

10.c. En lumière blanche, chaque longueur d’onde de la source donne son propre système de franges
et les sources de longueurs d’onde différentes étant non cohérentes, on observe à l’écran la superposition de
tous les systèmes de franges. En un point des miroirs certaines longueurs d’onde donnent des franges sombres

qui donnent des cannelures dans le spectre soit à résoudre p(x) =
2αx

λ
= k demi entier.

Pour résoudre on fait un encadrement de p:
2αx

λmax

= 5, 8 < p <
2αx

λmin

= 9, 7 en prenant λmin = 450 nm

(pour le bleu) et λmax = 750 nm (pour le rouge). Il y a donc 4 cannelures qui correspondent à p =
6, 5− 7, 5− 8, 5− 9, 5.
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II. Diffusion de neutrons

1. La loi de Fick s’écrit
−→
jD = −D

−−→
grad n(r, t) = −D

∂n

∂r
−→er . Cette loi traduit que la diffusion se fait des

fortes vers les faibles densités et qu’elle est d’autant plus efficace que le coefficient de diffusion est grand et
que les inhomogénéités de densités sont importantes.

2.

2.a. Le volume compris entre les cylindres
de rayons r et r+ dr s’écrit dτ = 2πrLdr (surface du
petit cylindre fois l’épaisseur).

r

r+dr

jD(r,t)

jD(r+dr,t)

système

2.b. Le nombre de neutrons qui entrent dans le système est le nombre de neutrons qui traversent
le cylindre de rayon r soit δNe = jD(r, t)2πrLdt.

Le nombre de neutrons qui sortent du système est le nombre de neutrons qui traversent le cylindre de rayon
r + dr soit δNs = jD(r + dr, t)2π(r + dr)Ldt.

Le nombre de neutrons dans le système à l’instant t est N(t) = n(r, t)2πrLdr.

Le nombre de particules dans le système à l’instant t+ dt est N(t+ dt) = n(r, t+ dt)2πrLdr .

Le nombre de neutrons absorbés par le matériau entre t et t+ dt est δNabs = K2πrLdrdt.

La conservation du nombre de neutrons s’écrit N(t+ dt)−N(t) = δNe − δNs + δNabs.

d’où n(r, t+ dt− n(r, t))2πrLdr = −(jD(r + dr, t)(r + dr) − jD(r, t)r)2πLdt −K2πrLdrdt.

avec dt et dr petits on fait les DL:
∂n

∂t
2πrLdrdt = −

∂(jD(r, t)r)

∂r
2πLdrdt−K2πrLdrdt.

soit
∂n

∂t
= −

1

r

∂(jD(r, t)r)

∂r
−K.

3. En régime stationnaire
∂n

∂t
= 0 soit

1

r

∂(jD(r, t)r)

∂r
= −K.

On a donc
∂(jD(r, t)r)

∂r
= −Kr soit en primitivant jD(r, t)r = −

Kr2

2
+B ou encore jD(r, t) = −

Kr

2
+

B

r
.

En r = 0, jD diverge. Il faut donc prendre B = 0 pour que jD soit défini en tout point.

On a donc jD(r) = −
Kr

2
.

On a
dn

dr
= −

jD

D
= +

Kr

2D
d’après la loi de Fick.

On primitive pour trouver n soit n(r) =
Kr2

4D
+ C.

On trouve la constante C en utilisant la condition aux limites données par l’énoncé n(r = R1) = n1 =
KR2

1

4D
+ C.

On a donc n(r) = n1 +
K(r2 −R2

1)

4D
.

4. La densité de neutrons est minimale sur l’axe du cylindre en r = 0, on a nmin = n1−
KR2

1)

4D
. Une densité

est positive soit il faut n1 >
KR2

1

4D
ou encore K <

4Dn1

R2
1

.
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III. Correction: séchage des sols

1. Il y a évaporation lorsque les molécules d’eau liquide du sol se transforment en vapeur. Cela se produit
lorsque Pext est inférieure à la pression de vapeur saturante. En effet, lorsque la pression en vapeur d’eau
est plus faible que Psat, des molécules d’eau liquide se vaporisent pour augmenter la pression de la vapeur
d’eau pour atteindre la valeur de la pression à l’équilibre, Psat(T ).

2. Le vent chasse les molécules d’eau vapeur qui sont à la surface du sol, ainsi il y a moins de molécules
d’eau vapeur, et l’évaporation augmente pour former de nouvelles molécules d’eau vapeur pour augmenter
la pression de vapeur d’eau pour qu’elle atteigne sa valeur à l’équilibre Psat(T ). Ainsi le sol sèche plus vite.

3. La loi de Fick s’écrit
−→
jD = −D

−−→
grad n où

−→
jD est le vecteur densité de courant de particules en

particules.m−2.s−1, n est la densité particulaire ou le nombre de particules par unité de volume en particules.m−3

et D est le coefficient de diffusion en m2.s−1.

Le flux de particules s’écrit φS(z) = jD(z, t)S = −D
dnvap

dz
S d’après la loi de Fick.

4. On considère le système élémentaire de surface S
compris entre z et z + dz. En régime stationnaire,
le nombre de molécules d’eau qui entrent dans ce
système est égal au nombre de molécules d’eau qui
en sortent entre t et t + dt. On a donc φS(z)dt =
φS(z + dz)dt ainsi φS ne dépend pas de z.

Oz

z+dz

z

jD(z+dz)

jD(z)

systeme

5. On a φS = −D
dnvap

dz
S = constante donc

dnvap

dz
=

−φS

DS
. On primitive: nvap(z) =

−φSz

DS
+ C. On

trouve la constante C en appliquant la condition aux limites nvap(zm) =
−φSzm

DS
+ C. On en déduit

nvap(z) =
−φS(z − zm)

DS
+ nvap(zm).

6. On a P (z = zm) = Psat(T ). Or la vapeur d’eau est un GP donc on peut appliquer P (z = zm) = Psat(T ) =
nRT

V
où n est le nombre de moles de vapeur d’eau et nvap est le nombre de molécules d’eau par unité de

volume on a donc nvap =
nNa

V
soit P (z = zm) = Psat(T ) =

nvap(zm)RT

Na

soit nvap(zm) =
Psat(T )Na

RT
.

7. On remplace dans l’expression de nvap(z) soit nvap(z) =
−φS(z − zm)

DS
+

Psat(T )Na

RT
.

On applique la loi des GP en z = H soit P (z = H) =
n(z = H)RT

V
avec n(z = H) est le nombre de moles

d’eau en z = H soit comme précédemment n(z = H) =
nvap(z = H)V

Na

donc P (z = H) =
nvap(z = H)RT

Na

avec nvap(z = H) =
−φS(H − zm)

DS
+

Psat(T )Na

RT
.

On obtient donc P (z = H) = −
φS(H − zm)RT

NaDS
+ Psat(T ).

8. A l’interface air-sol soit en z = H , la pression de vapeur d’eau est continue soit P (z = H) = Pext =

−
φS(H − zm)RT

NaDS
+ Psat(T ), on en déduit φS =

(Psat(T )− Pext)NaDS

(H − zm)RT
.

9. Le nombre de molécules d’eau qui traversent la surface S en z = zm entre t et t+ dt est égal à φSdt.

Ces molécules d’eau viennent de la zone sol mouillé dans laquelle ces molécules sous forme de liquide se sont
vaporisées. A l’instant t, l’interface sol mouillé-sol sec se trouve en zm et A l’instant t + dt, l’interface sol
mouillé-sol sec se trouve en zm + dzm (avec dzm < 0 car l’interface descend). Ainsi le volume −Sdzm est
initialement occupé par de l’eau sous forme liquide, ce volume contient nliq(−Sdzm) molécules d’eau sous
forme liquide qui deviennent vapeur.

On a donc φSdt = nliq(−Sdzm) d’où
dzm

dt
= −

φS

nliqS
< 0: car zm diminue au cours du temps.

De plus la diffusion est importante, plus il y a de molécules d’eau qui se vaporisent et donc le sol sèche plus
rapidement soit zm diminue plus vite (φS est au numérateur).

De même plus il y a de molécules d’eau liquide dans le sol mouillé, plus ce sera long pour sécher le sol, donc
zm varie lentement quand nliq est grand.
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10. On combine les deux équations:
dzm

dt
= −

φS

nliqS
et φS =

(Psat(T )− Pext)NaDS

(H − zm)RT
. On a donc

dzm

dt
=

−
(Psat(T )− Pext)NaD

(H − zm)RTnliq

.

Pour trouver le temps de séchage, on sépare les variables et on intègre entre t = 0 où zm = H et t = τsechage
où zm = 0. Soit:
∫ 0

H

(zm −H)dzm =
(Psat(T )− Pext)NaD

RTnliq

∫ τsechage

0

dt.

avec

∫ τsechage

0

dt = τsechage

avec

∫ 0

H

(zm −H)dzm = [
z2m
2

−Hzm]0H = 0− (
H2

2
−H2) =

H2

2

On obtient donc pour temps de séchage τsechage =
RTnliqH

2

2(Psat(T )− Pext)NaD
.
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IV. Turbine à gaz

1. On écrit les réactions de combustion du méthane et du fuel:

CH4 + 2O2 → CO2 + 2H20

C16H32 + 24O2 → 16CO2 + 16H20

Une mole de fuel, produit par sa combustion à une énergie de 7 600 kJ et à un dégagement de 16 moles de
CO2.

Une mole de méthane, produit par sa combustion à une énergie de 803 kJ et à un dégagement d’une mole
de CO2.

Je cherche le nombre de moles de méthane qui produit la même énergie que la combustion d’une mole de

fuel. Il faut
7600

803
= 9, 5 moles de méthane pour produire la même énergie qu’une mole de fuel. D’après

la réaction de combustion, 9, 5 moles de méthane produisent 9, 5 moles de CO2, ce qui est inférieur aux 16
moles de CO2 produites par le fuel.

Ainsi la combustion du méthane produit moins de CO2 que la combustion du fuel pour une même énergie
libérée.

2. On place le point 3 sur la courbe de rosée à 1 bar et le point 4 sur la courbe d’ébullition à 1 bar.

Les points 1 et 2 sur l’isobare 10 bars.

La transformation 2-3 dans la turbine est adiabatique (pas d’entropie échangée) et réversible (pas d’entropie
créée), elle est donc isentropique.

La transformation 4-1 est isenthalpique.

Point 1 Point 2 Point 3 Point 4
T (0C) 100 410 100 100
P (bar) 10 10 1 1
Etat liquide vapeur sèche vapeur saturante xv = 1 liquide saturant xl = 1

h(kJ.kg−1 410 3300 2700 410

3. On applique le premier principe industriel dans la turbine soit pour la transformation 2-3 qui est adia-
batique soit: h3 − h2 = wu,23 + q23 = wuT soit wuT = −600 kJ.kg−1 < 0: le fluide donne du travail pour
faire tourner la turbine.

On applique le premier principe industriel dans le générateur de vapeur, transformation 1-2, il ne comprend
pas de pièce mobile donc le travail utile est nul soit: h2−h1 = wu,12+q12 = qGV soit qGV = +2890 kJ.kg−1 >

0: le fluide reçoit du transfert thermique pour être vaporisé (contact avec la source chaude).

On applique le premier principe industriel dans le condenseur, transformation 3-4, il ne comprend pas de
pièce mobile donc le travail utile est nul soit: h4 − h3 = wu,34 + q34 = qcond soit qcond = −2290 kJ.kg−1 > 0:
le fluide donne du transfert thermique en se condensant (contact avec la source froide).
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fluide du
  moteur

source chaude 
(générateur
de vapeur)

source froide
(condenseur)

w=wuT<0

qc=qGV>0

qf=qcond<0

Le rendement de ce moteur est défini par l’énergie

produite sur l’énergie couteuse soit r =
−wuT

qGV

=

0, 21.

4. La turbine a un rendement de 100 % donc la puissance mécanique qu’elle reçoit (celle qui lui donne le
fluide soit PuT ) et la puissance électrique de la turbine sont égales.

On a donc Pelec = Dm|wuT | soit Dm =
Pelec

|wuT |
= 0, 42 kg.s−1.
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