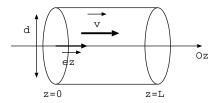
I. Écoulement dans un vaisseau sanguin

On s'intéresse à l'écoulement horizontal du sang dans un seul vaisseau sanguin qu'on assimile à une conduite cylindrique indéformable de diamètre d et de longueur L. Le sang est un fluide incompressible de masse volumique $\rho_s=1060~kg.m^{-3}$. Le sang est un fluide newtonien de viscosité dynamique égale à $\eta_s=1,6.10^{-3}$. L'écoulement du sang est stationnaire



Le gradient de pression est uniforme le long de la conduite et on note $\Delta P = P(z=0) - P(z=L) > 0$ la différence de pression entre le début et la fin du vaisseau sanguin considéré. Le champ des vitesses est de la forme $\overrightarrow{v} = v(r)\overrightarrow{e_z}$ en coordonnées cylindriques d'axe (Oz) et P = P(z).

Formulaire mathématique:

Laplacien en coordonnées cylindriques: $\Delta v(r) = \frac{1}{r} \frac{d}{dr} (r \frac{dv}{dr})$.

l'égalité f(z) = g(r) implique que les fonctions sont constantes soit f(z) = g(r) = K une constante.

Le gradient en coordonnées cylindriques: $\overrightarrow{grad} \ a = \frac{\partial a}{\partial r} \overrightarrow{e_r} + \frac{1}{r} \frac{\partial a}{\partial \theta} \overrightarrow{e_\theta} + \frac{\partial a}{\partial z} \overrightarrow{e_z}$.

1. Montrer que l'accélération d'une particule fluide est nulle.

2. Déduire de l'équation de Navier-Stokes que la vitesse s'écrit $\overrightarrow{v} = \frac{\Delta P}{4n_cL}(\frac{d^2}{4} - r^2)\overrightarrow{e_z}$.

Représenter le champ des vitesses dans une section droite de conduite.

3. En déduire l'expression du débit volumique D_v en fonction des données de l'énoncé.

4. Par analogie avec l'électricité justifier que l'on peut définir la résistance hydraulique R_H de sorte que $\Delta P = R_H D_v$. Montrer que la résistance hydraulique s'exprime sous la forme: $R_H = \frac{128\eta_s L}{\pi d^4}$: cette expression constitue la loi de Poiseuille.

On se propose de calculer la perte de charge (diminution de pression à la traversée des artérioles) due aux artérioles afin d'effectuer une comparaison avec les données réelles. On supposera que la loi de Poiseuille peut s'appliquer dans tous les vaisseaux sanguins.

5. A partir du tableau 1, déterminer le débit volumique du sang dans l'aorte D_v .

Justifier ensuite que le nombre d'artérioles dans le corps humain vaut environ $N=1,5.10^6$.

6. En prenant $D_v = 5 L.min^{-1}$, estimer les pertes de charge $\Delta P_{arterioles}$ dans les artérioles. Comparer cette valeur à celle pouvant être déterminée à partir du tableau 1. Vérifier la cohérence.