
PC - Lycée Dumont D’Urville

TD 3 ondes

I. Deux cordes de masses différentes

Une corde vibrante très longue et donc considérée
comme infinie, est soumise à une tension T0. Elle est
formée d’une corde de masse liné̈ıque µ1 pour x < 0
et d’une corde de masse linéique µ2 pour x > 0. Elles
sont réunies en x = 0 par un noeud, considéré comme
une masse ponctuelle M .
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Les vitesses de propagation des ondes à gauche et à droite du noeud sont notées respectivement c1 et c2. Un
générateur d’ondes très loin à gauche (soit en x → −∞) génère une OPPH incidente qui se propage selon
+Ox notée yi(x, t) de la forme yi(x, t) = y0 cos(ωt − k1x). Arrivée sur le noeud, cette onde met celui-ci en
mouvement transversal, de même pulsation que l’onde incidente. A son tour, le mouvement du noeud génère
une onde réfléchie notée yr(x, t) et une onde transmise notée yt(x, t).

1. Rappeler, sans démonstration, les équations de propagation vérifiées par yi(x, t), yr(x, t) et yt(x, t).
Donner les expressions de c1 et c2 en fonction des données puis de k1 et k2, les vecteurs d’onde sur la corde
1 et sur la corde 2, en fonction de c1, c2 et ω.

2. On note ry0 et τy0 les amplitudes respectives des ondes réfléchies et transmises. Exprimer en notation
réelle yr(x, t) et yt(x, t).

3. On note y(x = 0−, t) et y(x = 0+, t), la hauteur de la corde respectivement juste à gauche et à droite
du noeud. Que pensez-vous de ces deux hauteurs? En déduire une première relation entre r et τ (équation
(∗)).

4.

4.a. Soit le système infinitésimal de corde
compris au repos entre x et x + dx. On note y(x, t)
la hauteur de la corde en x à l’instant t. Dans
l’approximation des petits angles, exprimer α(x, t) en
fonction d’une dérivée de y(x, t).
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4.b. Le noeud est supposé sans masse. Déduire de la RFD appliquée au noeud, l’égalité
∂y

∂x
(x = 0−, t) =

∂y

∂x
(x = 0+, t). Enfin déduire de cette égalité, une relation entre r, τ , c1 et c2 (équation

(∗∗)).

5. Déduire de la résolution du système composé des équations (∗) et (∗∗), les expressions de r et τ en
fonction de c1 et c2. Commenter ces expressions.

6. Dans le cas où µ1 << µ2, donner les expressions approchées de r et τ . Exprimer les ondes y(x < 0, t) et

y(x > 0, t). Commenter le résultat. On donne: cos p− cos q = −2 sin(
p+ q

2
) sin(

p−+q

2
).

Réponses: 1- k1 =
ω

c1
et k2 =

ω

c2
3- 1 + r = τ 4- 1 − r =

c1τ

c2
5- r =

c2 − c1

c2 + c1
et τ =

2c2
c1 + c2

6- r = −1 et

τ = 0 on trouve une OS
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II. Transmission du son à travers une cloison

Une OPPH se propage dans l’air. Cette onde de pulsation ω arrive sous incidence normale sur une cloison
rigide et non absorbante d’épaisseur ec, de surface Sc et de masse Mc. L’épaisseur de la cloison est très
petite devant la longueur d’onde donc on assimile la cloison à une cloison très fine placée en x = 0.

Pour l’onde incidente, on note pi(x, t) la surpression acoustique et vi(x, t) la vitesse particulaire. On désigne
p
i
(x, t) et vi(x, t) les expressions complexes correspondantes. On note k la norme du vecteur d’onde, pim

l’amplitude de la surpression de l’onde incidente.

On définit l’impédance acoustique du milieu Z.

1. Exprimer les ondes complexes p
i
(x, t) et vi(x, t) en fonction de k, ω, Z et pim.

2. Rappeler la relation entre k, ω et c.

Pour l’onde réfléchie, on note pr(x, t) la surpression acoustique et vr(x, t) la vitesse particulaire. On désigne
p
r
(x, t) et vr(x, t) les expressions complexes correspondantes. On note prm l’amplitude de la surpression de

l’onde réfléchie.

3. Exprimer les ondes complexes pr(x, t) et vr(x, t) en fonction de k, ω, Z et prm.

Pour l’onde transmise, on note pt(x, t) la surpression acoustique et vt(x, t) la vitesse particulaire. On désigne
p
t
(x, t) et vt(x, t) les expressions complexes correspondantes. On note ptm l’amplitude de la surpression de

l’onde réfléchie.

4. Exprimer les ondes complexes pt(x, t) et vt(x, t) en fonction de k, ω, Z et ptm.

Les surpressions sonores sont à l’origine d’une vibration de la cloison mince. Par le choix d’une bonne origine
des temps cette vibration peut être modélisée par son déplacement Xc(t) = Xm cos(ωt) auquel on associe le
déplacement complexe Xc(t).

5. Exprimer en notation complexe la position Xc(t), la vitesse v(t) et l’accélération de la cloison a(t).

6. Exprimer en notation complexe, les forces de pression exercées sur la cloison.

7. Déduire du PFD appliqué à cloison une équation reliant Mc, Sc, ω, Xm, pim, prm et ptm. Commenter
la relation trouvée dans la cas où Mc = 0.

8. Utiliser la continuité de la vitesse de la cloison pour trouver une relation entre Xm, ω, ptm et Z.

Utiliser la continuité de la vitesse de la cloison pour trouver une relation entre pim, prm et ptm.

Déduire de ces deux relations que Xm =
pim − prm

jωZ
.

9. On pose ω0 =
2ScZ

Mc

. Montrer ainsi que prm =

jω
ω0

1 + jω
ω0

pim.

On définit les coefficients complexes de réflexion r =
prm

pim
et τ =

ptm

pim

10. Exprimer les coefficients r et τ en fonction de ω et ω0. La cloison se comporte comme un filtre. Préciser
la nature de ce filtre.

Réponses: Les ondes sont en ej(ωt±kx) 5- a = −ω2Xmejωt 7- −ω2McXm = (pim + prm − ptm)Sc 8-

pim − prm = ptm = jωZXm.
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III. Propagation dans un câble coaxial

Une tranche infinitésimale dx d’une ligne bifilaire
idéale est composée d’une inductance l.dx et d’une
capacité γ.dx.

i(x,t) i(x+dx,t)

u(x+dx,t)u(x,t)

ldx

γdx

x x+dx

1. Déduire de l’application d’une loi des noeuds et d’une loi des mailles que u(x, t) et i(x, t) vérifient les

équations différentielles
∂i

∂x
(x, t) = −γ

∂u

∂t
(x, t) et

∂u

∂x
(x, t) = −l

∂i

∂t
(x, t).

2. Montrer que u(x, t) et i(x, t) sont solutions d’une équation de d’Alembert (indication : pour toute fonction

y(x, t) on a
∂

∂t
(
∂y

∂x
) =

∂

∂x
(
∂y

∂t
)). Quelle est la vitesse de propagation des ondes ? Vérifier l’homogénéité du

résultat.

3. Une onde de la forme u(x, t) = u0 cos(ωt − kx) se propage dans le câble. En remplaçant u(x, t) dans
l’équation d’onde trouvée précédemment déterminer la relation entre k et ω. Donner l’expression de i(x, t)
en utilisant une des équations obtenues dans la question 1.

On définit l’impédance de la ligne par Z =
u(x, t)

i(x, t)
pour l’OPPH+. Exprimer Z en fonction des données.

Comment s’écrit le rapport
u(x, t)

i(x, t)
pour une OPPH−?

Réponses : 2- c =
1

√
lγ

3- relation de dispersion k =
ω

c
et Z =

√

l

γ
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