PC - Lycée Dumont D’Urville
Chapitre EM 4 : théoreme de Gauss et applications

. Densité volumique de charges

Les charges sont réparties dans des volumes (noyau, atome, molécules, armatures d’un condensateur,...). On
définit p, la densité volumique de charges par:

p est un nombre positif ou négatif en fonction du signe des charges d’unité:

Quand p est donnée on peut calculer la charge contenue dans un volume:

Pour une répartition non uniforme de charges: Pour une répartition uniforme de charges:

Au sujet des volumes élémentaires:

En coordonnées cartésiennes, le volume élémentaire s’écrit:

Coordonnées cylindriques Coordonnées sphériques

Oz Qz

Au sujet des volumes:

Volume d’une sphere de rayon R:
Volume d’'un cylindre de rayon R et de hauteur h:
Ezemples

Soit une sphere de rayon R et de densité volumique de charges pg uniforme a l'intérieur de la sphere et nulle
a lextérieur de la sphere. Exprimer la charge @@ de cette sphere.



Soit un cylindre de rayon R, de hauteur h et de densité volumique de charges pp uniforme a l'intérieur du
cylindre et nulle a I'extérieur du cylindre. Exprimer la charge @) dans le cylindre.

Soit deux pavés d’épaisseurs e; et es et de section S. On définit la densité volumique de charges par:
plx <0)=0, p(0 <z <er) =p1, ple;r <z < ez) = ps et p(x > ez) =0. Donner la relation entre p; et pa
(uniformes) pour que la charge totale soit nulle.

Soit une sphere de centre O, de rayon R et de charge +@Q uniformément répartie dans son volume. Exprimer
la charge Q1 contenue dans la spheére de méme centre O et de rayon R; < R.

r
Ezercice: soit une sphere de rayon ag de densité volumique de charges p(r) = po(1 — —) en coordonnées
ag

sphériques (po constante positive). Calculer la charge totale contenue dans cette sphere.

II. Théoréme de Gauss

On admet que le champ électrique vérifie les équations locales:



M¢éthode d’application: le théoreme de Gauss sert a trouver le champ électrique créé par une distribution de
charges a forte symétrie (sphére, cylindre infini et parallélépipéde infini). Il s’applique en trois étapes:

Etape 1 : On choisit, pour repérer M, un systeme de coordonnées sphériques, cylindriques ou cartésiennes,
adapté aux symétries de la distribution

On prévoit la direction du champ électrique en M grace aux plans de symétrie présents passant par M.
On prévoit les variables du champ électrique grace aux invariances présentes.

Etape 2 : On choisit une surface de Gauss qui passe par M et qui respecte les symétries (concreétement cette
surface doit étre perpendiculaire & E ou tangente a E en tout point).

On calcule le flux sortant du champ électrique a travers la surface de Gauss.

Etape 3 : On calcule la charge intérieure contenue dans la surface de Gauss, on est souvent amené a considérer
deux cas suivant que M est a l'extérieur ou a l'intérieur du volume qui contient les charges. On fait un
dessin pour visualiser les charges présentes et les charges intérieures a la surface de Gauss.

On applique le théoréme. On obtient ’expression du champ électrique qui est défini par morceaux (exemple
dans le cas d’une sphére chargée: le champ électrique a U'intérieur et celui a l'extérieur de la sphere n’ont
pas la méme expression).

On déduit le potentiel de I’équation locale E = —gr—zlglv. On trouve les constantes d’intégration en écrivant
que le potentiel est continu et que loin des charges le potentiel est nul (attention: cette condition ne
s’applique pas lorsqu’il y a des charges a 'infini, par exemple dans le cas de charges réparties entre deux
plans infinis, ou dans le cas ou les charges sont réparties sur un cylindre infini... Dans ces situations, 1’énoncé
doit donner la valeur du potentiel en un point pour trouver la constante d’intégration).

La suite du chapitre est consacrée a la détermination du champ électrique et du potentiel électrique par
application du théoreme de Gauss pour les distributions de charges suivantes:

- Une sphere de centre O, de rayon R, de charge @), chargée uniformément en volume
- Une sphere de centre O, de rayon R, de charge @, chargée uniformément en surface

- Un cylindre de rayon R, d’axe Oz et de longueur [ >> R (ce cylindre est considéré de longueur infini), de
charge Q uniformément chargé en volume

- Un parallélépipede de section S compris entre les plans z = —e/2 et z = ¢/2 chargé uniformément en
volume



