
PC- Lycée Dumont D’Urville

TD théorème de Gauss
I. Champ créé par un fil

Soit un cylindre d’axe Oz, de rayon négligeable, de longueur l très grande et portant une charge totale Q
uniformément répartie. Déterminer le champ électrique créé par ce cylindre par application du théorème de
Gauss.

Réponse: E(r) =
Q

2πǫ0rl

II. Champ créé par un cylindre chargé en surface

Soit un cylindre de rayon R, d’axe Oz et de hauteur h portant une charge totale Q uniformément répartie

sur sa surface. Il n’y a pas de charge dans le volume du cylindre. On néglige les effets de bord soit h >> R.

1. Déduire du théorème de Gauss les expressions de
−→
E+(M) et

−→
E

−
(M), champ électrique en M qui se

trouve respectivement à l’intérieur et à l’extérieur du cylindre. Tracer la courbe donnant le champ électrique
en fonction de r et commenter.

2. Déterminer les expressions du potentiel électrique V+(M) et V
−
(M) en M qui se trouve respectivement

à l’intérieur et à l’extérieur du cylindre. On suppose que le potentiel est égal à V0 au centre du cylindre, sur
l’axe Oz.

Réponses :
−→
E+(M) =

−→
0 et

−→
E

−
(M) =

Q

2πǫ0rh
−→er , V+(M) = V0 et V

−
(M) = −

Q

2πǫ0h
ln(

r

R
) + V0.

III. Champ créé par un parallélépipède

Soit un parallélépipède de dimensions a selon Ox,
b selon Oy et e selon Oz qui porte une charge +Q
uniformément répartie. On suppose que ce par-
allélépipède est très grand selonOx etOy soit a, b >>
e. La densité volumique de charges est une fonction
de z telle que ρ(z) = 0 pour z > e/2 et z < −e/2 et
ρ(z) = ρ0 (constante) pour −e/2 < z < +e/2.

Oy
Ox

e

z=e/2

z=-e/2

Oz

b

1. Montrer que le champ électrique en M s’écrit
−→
E (M) = E(z)−→ez . Quelle relation a-t-on entre

−→
E (z) et

−→
E (−z)?

2. On choisit pour surface de Gauss un cylindre
d’axe Oz de section S compris entre −z et +z. Ex-
primer le flux du champ électrique à travers ce cylin-
dre.

3. Déduire du théorème de gauss, le champ
électrique en tout point de l’espace et tracer la courbe
donnant E en fonction de z.

4. Exprimer le potentiel créé par cette distribution
de charges en prenant V (z = 0) = 0.
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Réponses: E(z) =
ρ0z

ǫ0
et V (z) = −

ρ0z
2

2ǫ0
pour −e/2 < z < e/2, E(z) =

ρ0e

2ǫ0
et V (z) = −

ρ0ez

2ǫ0
pour z > e/2

et E(z) =
−ρ0e

2ǫ0
et V (z) =

+ρ0ez

2ǫ0
pour z < −e/2

IV. Equation de Poisson

Une sphère de rayon R et de centre O porte une densité volumique de charges uniforme ρ0. Le potentiel
électrique est nul loin de la sphère et vaut V0 au centre de la sphère. Rappeler les équations de Maxwell
Faraday et de Maxwell Gauss et en déduire l’équation de Poisson. Montrer que le potentiel ne dépend que
de r en coordonnées sphériques et exprimer le potentiel en tout point M . En déduire le champ électrique.

Donnée: ∆V =
1

r

∂2

∂2r
(rV ) +

1

r2 sin θ

∂

∂θ
(sin θ

∂V

∂r
) +

1

r2 sin2 θ

∂2V

∂2φ
.

Réponses: V (r < R) = −
ρ0r

2

6ǫ0
+ V0 et V (r > R) =

−ρ0R
3

6ǫ0r
+

V0R

r

1



V. Condensateur cylindrique

On considère deux électrodes (ou armatures) cylin-
driques de même axe Oz et de rayon respectif R1 et
R2 (de longueur l >> R1, R2) portant les charges
+Q > 0 et −Q réparties uniformément en sur-
face. L’électrode de rayon R1 a pour potentiel V1

et l’électrode de rayon R2 > R1 a pour potentiel V2.
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1. Soit un point M repéré par ses coordonnées cylindriques. Faire un schéma pour représenter M , ses

coordonnées et les vecteurs de base. Montrer que le champ électrique en M est de la forme
−→
E (M) = E(r)−→er .

2. On choisit pour surface de Gauss, un cylindre d’axe Oz et de rayon r = HM . Exprimer le flux du champ
électrique à travers ce cylindre.

3. En déduire le champ électrique pour R1 < r < R2 puis la différence de potentiel V1 − V2 en fonction de
Q, l, ǫ0, R1 et R2.

4. Ce système constitue un condensateur cylindrique. Rappeler la relation entre sa capacité C, la charge
+Q et la tension à ses bornes U = V1 − V2. Déduire des questions précédentes l’expression de la capacité de
ce condensateur.

5. En tout point M où règne un champ électrique, il existe une énergie électrique dont l’expression par unité

de volume est donnée par : ue(M) =
ǫ0E

2(M)

2
. Exprimer l’énergie électrique totale Ue entre les cylindre de

rayons R1 et R2.

Rappeler l’expression de l’énergie stockée dans un condensateur en fonction de la charge Q des armatures et
de sa capacité C. En déduire l’expression de la capacité du condensateur cylindrique. Vérifier la cohérence
avec le résultat précédent.

Réponse: C =
2πǫ0l

ln(R2

R1

)

VI. Répartition non uniforme de charges

Soit une sphère de rayon a0 et de centre O qui porte la densité volumique de charges ρ(r) = ρ0(1 −
r

a0
) où

ρ0 est une constante positive. Il n’y a pas de charges à l’extérieur de la sphère.

1. Exprimer la charge totale de la sphère.

2. Déduire des symétries et des invariances que le champ électrique s’écrit
−→
E (M) = E(r)−→er .

3. Déduire de l’équation de Maxwell-Gauss, le champ électrique pour r < a0 et pour r > a0. On rappelle
que le champ électrique est continu lorsque les charges sont réparties dans des volumes.

On donne en coordonnées sphériques : div
−→
A =

1

r2
∂(r2Ar)

∂r
+

1

r sin θ

∂(sin θAθ)

∂θ
+

1

r sin θ

∂(Aφ)

∂φ

4. Retrouver les résultats en utilisant le théorème de Gauss.

Réponses: Q =
ρ0πa

3
0

3
, E(r) =

ρ0r

3ǫ0
(1−

3r

4a0
) pour r < a0 et E(r) =

ρ0a
3
0

12ǫ0r2
pour r > a0

VII. Symétrie sphérique

1. Une sphère de centre O et de rayon b contient des charges positives réparties uniformément en volume.
Q est la charge totale de la distribution. Déterminer la direction et les variables du champ électrique
par des considérations de symétrie et d’invariance. Déterminer, en utilisant l’équation de Maxwell Gauss,

les expressions
−→
E+(M) et

−→
E

−
(M) du vecteur champ électrostatique lorsque M se trouve respectivement à

l’extérieur et à l’intérieur de la sphère, à la distance r de son centre O.

On donne en coordonnées sphériques : div
−→
A =

1

r2
∂(r2Ar)

∂r
+

1

r sin θ

∂(sin θAθ)

∂θ
+

1

r sin θ

∂(Aφ)

∂φ

2



2. Application:

Une boule B de centre O1 est creusée d’une cavité
sphérique de centre O2. Elle est chargée d’une den-
sité de charge ρ uniforme, exception faite de la cavité
sphérique qui est vide de charge. On appelle D cette
distribution de charge

O1
O2

2.a. On considère la distribution D1 constituée par la boule pleine de centre O1 et chargée avec la
densité volumique ρ. Quelle distribution D2 faut-il lui superposer pour retrouver la distribution D?

2.b. En déduire le champ que le champ électrique créé par D dans la cavité est
−→
E =

ρ

3ǫ0

−−−→
O1O2.

Réponses :
−→
E

−
=

Q

4πb3ǫ0

−−→
OM =

ρ

3ǫ0

−−→
OM et

−→
E+ =

Q

4πr2ǫ0

−→er , f0 =

√

e2

16π2mǫ0a3

VIII. Champ de gravitation

1. Rappeler les analogies formelles que l’on peut faire entre électrostatique et gravitation et en déduire le
théorème de Gauss pour la gravitation.

2. On considère une planète de masse M répartie
uniformément entre deux sphères de rayons R1 et R2.

2.a. Exprimer la masse volumique ρ0 en un
point M tel que R1 < r < R2.

2.b. Montrer que le champ de gravitation se

met sous la forme
−→
G (M) = G(r)−→er .

2.c. Déduire du théorème de Gauss, les ex-
pressions du champ de gravitation pour r < R1,
R1 < r < R2 et r > R2.

R1

R2
O

masse M

Réponses: pour r < R1:
−→
G (M) =

−→
0 , pour R1 < r < R2:

−→
G (M) =

−GM

r2
(
r3 −R3

1

R3
2 −R3

1

)−→er , pour r > R2:

−→
G (M) =

−GM

r2
−→er

IX. Polarisabilité électronique d’un atome

Dans un atome le noyau de charge +Ze est assimilé à un point noté P . Les électrons constituent un nuage
électronique modélisé par une sphère de centre N , de rayon a et de charge −Ze, uniformément répartie. On
note ρ la densité volumique de charge du nuage électronique.

1. Exprimer le champ électrique créé par le nuage électronique en un point M à l’intérieur du nuage (soit
pour NM = r < a).

En absence de champ électrique extérieur, N et P sont superposés. Et quand on applique un champ

électrique extérieur
−→
E0, le nuage électronique se déplace et le noyau reste immobile: N et P sont donc

distants de d = NP . Il apparâıt alors un dipole induit de moment −→p = Ze
−−→
NP .

2. Ecrire l’équilibre du noyau (soumis au champ électrique extérieur et au champ électrique créé par le

nuage électronique), en déduire l’expression de
−−→
NP puis l’expression du moment dipolaire induit sous la

forme −→p = αǫ0
−→
E0. Exprimer α, appelé polarisabilité électronique.

3. Donner un ordre de grandeur de la distance NP dans un atome d’hélium soumis à un champ électrique
d’intensité 104 V/m avec ǫ0 = 8, 8.10−12 F.m−1.

Réponses :
−→
E (P ) = −

Ze

4πǫ0a3
−−→
NP , α = 4πa3, NP de l’ordre de 10−19 m
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