PC - Lycée Dumont D’Urville

DS 6 de physique

Calculatrices interdites

Le sujet comprend trois problemes indépendants & traiter dans 'ordre de votre choix.Il est demandé de
numéroter les pages au format i/N ol 7 est le numéro de la page et N le nombre de pages.

I1 est demandé un effort de présentation (tirer un trait entre chaque question et encadrer les résultats) et de
rédaction (prendre soin de nommer les lois utilisées, les hypotheses pour les appliquer et expliquer clairement).

I. Pression de radiation

Réflexion sur une corde

Une corde vibrante au repos de masse linéique u est o
tendue avec la tension de norme T'(x). En négligeant
leffet de la pesanteur, on considere la corde hori-
zontale le long de 'axe Oz. On s’intéresse aux pe-
tits mouvements transversaux. Le point de la corde
d’abscisse x au repos se déplace a 'instant ¢ de y(z, t)
selon ’axe Oy. On consideére des petits mouvements, y(x,t) t -
c’est-a-dire que 'angle a que fait la tangente de la
corde avec ’horizontale est petit.

TN a(x+dx, 1)

X x+dx X

1. Démontrer la relation entre a(x,t) et une dérivée partielle de y(z,t).

2. A T'aide du principe fondamental de la dynamique appliqué au bout de corde compris entre x et = + dz,

montrer que la norme de la tension est uniforme le long de la corde et montrer que y(z, t) vérifie une équation
2 2

de la forme % — c%% = 0. Exprimer ¢ en fonction des données.

On fixe un point de la corde a 'aide d’un petit anneau de diametre intérieur égal au diametre de la corde.

Cet anneau est maintenu dans une position fixe en x = 0. Au niveau de I’anneau, les ondes se réfléchissent.

En l’absence d’onde, la force exercée par la corde sur I’anneau est nulle. Lorsqu’une onde transversale se

propage le long de la corde, la corde exerce des forces T et T5 respectivement a gauche et a droite sur

Panneau. Les normes de ces forces sont identiques (||ﬁ|| = ||1_“2>|| =T).
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3. Exprimer lau_> force F exercée par la corde sur I'anneau en fonction de la tension de la corde T et de
langle 8 entre T5 et 'horizontale (8 est un angle non orienté et positif).

0
Justifier alors que cette force s’exprime en fonction de la dérivée partielle de —y(x =07) (en faisant un DL

Ox
au second ordre en ) comme F = g(% %(z

Soit une onde sinusoidale progressive incidente solution de 'équation (1): y;(z,t) = Asin(wt — kz).

(2= 07))% — T4 (@ = 07)77.
L’onde incidente se réfléchit sur I’anneau en x = 0 et donne naissance a une onde réfléchie de la forme:
yr(x,t) = —Asin(wt + kx).

4. Rappeler (sans démonstration) la relation entre les grandeurs suivantes : célérité de 'onde ¢, pulsation
de 'onde w et la norme du vecteur d’onde k.

5. Donner 'expression de 'onde résultante pour les x < 0. Préciser alors le type d’onde qui en résulte.

)sin(a ; b).

L . a
Donnée: sina — sinb = 2 cos(



6. Déterminer la projection de la force sur 'axe Ox dans le cas d’une telle onde. Déterminer alors

I’expression de sa valeur moyenne temporelle < ?e—g >.

- E(@)%r Z(@)%
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7. Donner la signification physique des deux termes qui figurent dans cette expression. Relier la moyenne

spatiale de I’énergie linéique de 'onde résultante & l’expression de la valeur moyenne de la projection sur

I’axe Ox de la force exercée par la corde sur I’anneau.

On donne la densité linéique d’énergie (énergie par unité de longueur de corde): e(z,t)

<Fea>

Dans ce cas, on définit la pression de radiation comme P,y = avec S la section de la corde.

En divisant la moyenne spatiale de cette énergie linéique de 'onde par la section de la corde, on trouve
I’énergie volumique de 'onde. On trouve alors un résultat général entre la pression de radiation et la densité
volumique moyenne d’énergie des ondes dans tous les domaines: électromagnétisme, acoustique,...

Onde acoustique

Suite a la vérification de I'existence d’une pression de radiation en électromagnétisme, son analogue acous-
tique a été recherché par les physiciens. La pression de radiation acoustique a alors fait I'objet de nombreux
travaux théoriques et expérimentaux. Cette pression déforme notamment l'interface entre deux milieux
comme on peut le voir sur I'image suivante.

Image 3 - Déformation de l'interface eau-air par la pression de radiation acoustique
Saource : thése de B. Issenmann sur la déformation d'interfaces fluides par la pression de radiation
acoustique, 2008

L’air est assimilé a un gaz parfait, initialement au repos et qui en I’absence de toute perturbation possede
une masse volumique pg, une pression Py et une température T uniformes. On étudie la propagation d’onde
plane de célérité c selon I'axe Ox. Le passage de 'onde perturbe I’équilibre. On définit les grandeurs suivantes
en un point d’abscisse x a 'instant ¢:

- la pression P(z,t) = Py + p1(z,t) pression acoustique telle que |p1(z,t)| << Py

- la masse volumique p(z,t) = po + p1(z,t) avec |p1(x,t)] << po

- la projection de la vitesse particulaire sur 'axe Oz, v(z,t) = 0+ vi(x,t) avec |vi(x,t)| << c.
On note xg le coefficient de compressibilité isentropique.

8. Etablir I’équation linéarisée de conservation de la masse dans le cas d’une propagation unidirectionnelle
selon Oz en fonction de pg, p1(x,t) et vy (z,t).

9. Ecrire la loi linéarisée de la conservation de la quantité de mouvement dans le cas d’une propagation
unidirectionnelle selon Ox en fonction de pg, vi(x,t) et pi(x,t).

10. Donner ’équation isentropique linéarisée reliant p1, po, xs et p1.
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11. En déduire que la surpression vérifie une équation de la forme = 0. Exprimer ¢ en

fonction des données.

On étudie une onde plane progressive harmonique d’expression p;(z,t) = p1g cos(wt — kz) provenant des
x < 0. Un obstacle est présent en z = 0.

12. Expliquer pourquoi la pression acoustique ne permet pas d’expliquer le phénomene de pression de
radiation sur l'obstacle.

On propose d’utiliser 'égalité citée précédemment selon laquelle la pression de radiation est égale a la
moyenne temporelle de ’énergie volumique de 'onde. On donne la densité volumique d’énergie d’une onde
acoustique: e(x,t) = %vl (z,t) + %pl (z,t)%

13. Donner la signification physique des deux termes qui figurent dans cette expression.. Dans le cas de
I'onde plane progressive incidente p;(z,t), montrer que e(x,t) peut s’écrire e(z,t) = xsp1 (x, )%

14. En considérant 'onde réfléchie sur Pobstacle d’expression p1g cos(wt + kx), déterminer la densité volu-
mique d’énergie de 'onde totale (incidente et réfléchie). En déduire 'expression de la pression de radiation



acoustique en fonction de xgs et pio.
On souhaite maintenant vérifier expérimentalement cette formule.

On réalise le protocole suivant : on émet une onde ultrasonore avec un émetteur d’ultrason fonctionnant a une
fréquence de 40 kH z. Le générateur basse fréquence alimente I’émetteur en tension sinusoidale d’amplitude
U.. On considere que I'amplitude de la pression acoustique de I'onde ultrasonore est proportionnelle & U,.
On place I'émetteur face a une balance de précision comme le précise la photo ci-dessous.

Image 4 - Expérience de la mesure de |a pression de radiation acoustique

En présence d’une onde ultrasonore, la balance affiche une masse m. La masse indiquée donne une mesure de
la force exercée par la pression de radiation sur le plateau de la balance. On fixe la distance entre I’émetteur
et la balance (3 ¢m). On mesure alors la masse m en faisant varier I’amplitude U.. On obtient les résultats
suivants :

U (V) 4 4,5 5 6 6,5 7 8 8,5 9 9,5 10
m (mg) 5 6 7 10 11 14 17 19 21 23 26

15. A partir des données de ’expérience, démontrer que celles-ci sont compatibles avec le résultat de la
question précédente. Une analyse graphique est attendue.

II. Instruments de musique

Cet exercice étudie certains instruments a percussion tels que le xylophone, le marimba ou le glockenspiel.
Ils sont formés de lames parallélépipédiques de bois ou de métal. Chacune d’elles produit, lorsqu’on la frappe
avec une baguette, un son de hauteur déterminée.

Glockenspiel Marimba

On envisage les vibrations longitudinales d’une lame o L
de longueur L. La matiere située au repos dans le
plan d’abscisse x se met en mouvement suite a une } /’, ' Ib
excitation. Elle occupe a l'instant ¢ le plan d’abscisse - T ];r Sl S o
x + u(z,t) et est soumise, de la part de la matiere 7 A ’ /
située & sa droite, & une force F) = F(z,t)e;. - b
 —

- X x+u(x,t) x

ex
On note p la masse volumique et E' le module d’Young Données:
du matériau dont on rappelle la définition : pour i
porter de Iy & lg + 6l la longueur d’une tige de section bronze acier
S, il faut exercer sur ses extrémités une force égale a p (SI) 9000 8000
ES?—Z. E (SI) | 10,0.10™ | 16.10'°

0




1. On considere le systeme infinitésimal compris entre = et x4 dx au repos. En présence d’une perturbation,
la tranche en = s’est déplacée de u(zx,t) et la tranche en x + dz s’est déplacée de u(x + dz,t). Montrer que

son allongement relatif s’écrit a—u(x, t). Que signifie physiquement le cas ou a—u(x, t) > 07
x x

0
2. En déduire que I*T)'d(x,t) = —i—ESa—u(x,t)e_g.
x

3. Dans cette barre la vitesse de propagation des ondes est de la forme ¢ = E%p?. Déterminer par une
analyse dimensionnelle les valeurs numériques de « et 5. Commenter le résultat.

4. Déduire de I’ application du PFD au systeme infinitésimal compris entre =z et x + dx 1’équation de
propagation vérifiée par u(zx,t). Rappeler sans démonstration la relation de dispersion.

5. On recherche des solutions de la forme wu(z, t) = ug sin(kz + ¢) sin(wt). De quel type de solution s’agit-il?
Justifier ce choix.

6. Les deux extrémités de la barre en x = 0 et en x = L sont fixes soit immobiles. Déterminer la valeur de
¢ et les valeurs possibles pour k, ainsi que les valeurs possibles pour la longueur d’onde A, et la fréquence
fn de 'onde. Représenter 'onde dans le mode fondamental et pour le premier harmonique.

7. On dispose de deux lames de glockenspiel de méme longueur, 'une en acier et 'autre en bronze. Laquelle
joue des notes plus graves? Justifier votre réponse. Donnée: /2 = 1, 4.

8. Une lame de glockenspiel en acier de longueur L = 20,0 ¢m émet un son de fréquence égale & 600 Hz.
Montrer qu’il ne peut pas résulter de ’excitation d’une onde longitudinale.

Les fréquences émises s’expliquent par les petits mouvements transversaux de la lame. On note y(x,t) les
petits déplacements verticaux au point d’abscisse x & I'instant ¢ et on admet que y(z,t) vérifie ’équation de
propagation:

0%y c2b? 0ty
W(Iat) + H@(Iat) =0

ou b est la dimension de la lame selon 'axe Oy.

9. On recherche des solutions de la forme y(z,t) = yosin(kz + ¢)sin(wt). Déterminer la relation de
dispersion entre k£ et w pour ces ondes.

10. Lorsque la lame est fixe & ses deux extrémités, montrer que les fréquences possibles s’écrivent f, =
5 Tcb

n 4\/§L2'
III. Etude du synchrotron SOLEIL

Un synchrotron est un instrument électromagnétique de grande taille destiné a ’accélération de particules
chargées. Le rayonnement synchrotron est un rayonnement électromagnétique émis par une particule chargée
possédant une accélération. Ce rayonnement est utilisé pour des analyses physiques. Dans le synchrotron
SOLEIL, situé a Saclay, des électrons, de masse notée m, et de charge —e, accélérés a une vitesse proche de
celle de la lumiere, sont déviés par des champs magnétiques.

Données

Vitesse de la lumiére dans le vide ¢ = 3,0-108 m-s

Masse de I'électron me=9,1-10"" kg = 5,1-10% keV/c’
Charge élémentaire e= 1,6-10"9 C

Valeur de I'électron-volt 1eV=1610"°J

Constante de Planck h= 6,6-10_34 J's

Constante d’Avogadro Na = 6,0-1023 mol™

Constante molaire des gaz parfaits R = 8,3 J-K™:mol™

Bien que les données soient fournies avec deux chiffres significatifs, les résultats numériques calculés seront
fournis, sauf indication contraire, avec UN SEUL chiffre significatif.

On donne le schéma général du synchrotron SOLEIL (Figure 1):



Aimant
de courbure

Les deux parties de ce probleme sont indépendantes.
Partie I : généralités

Des électrons non-relativistes, émis sans vitesse initiale, sont accélérés linéairement par un champ électrostatique
uniforme et unidirectionnel E = Eeg.

1. Rappeler la relation qui lie le champ électrostatique au potentiel électrostatique V. Donner le sens
physique de cette relation et en déduire ’énergie potentielle électrostatique de 1’électron en fonction de e et
de V.

2. Calculer la différence de potentiel nécessaire pour obtenir une énergie cinétique finale FE, = 1,0 keV'.
Justifier.

3. Dans la zone nommée Linac du synchrotron SOLEIL (voir figure 1), les électrons sont accélérés jusqu’a
une énergie cinétique E. = 100 MeV. Calculer leur vitesse v et en déduire que cet électron est relativiste
et sa vitesse ne peut donc pas étre calculée a l'aide de la forme de I’énergie cinétique utilisée en mécanique
classique.

4. Les électrons étant relativistes, leur énergie cinétique s’écrit : E, = (y — 1)mec? otl ¥ = ———— est

appelé facteur de Lorentz de I’électron. Calculer ce facteur. En déduire la vitesse approchée de ces électrons.

Les électrons sont ensuite accélérés jusqu’'a E, = 2,7 GeV grace a un autre accélérateur nommé booster
b b
puis libérés dans I'anneau de stockage. Leur vitesse est alors assimilable a celle de la lumiere.

5. L’intensité du courant circulant dans 'anneau de stockage, assimilé & un cercle de rayon R = 57 m, vaut
a un instant donné ¢ = 0,43 A. Evaluer le temps mis par un électron pour parcourir 'anneau de stockage et
en déduire la charge totale circulant dans ’anneau et le nombre d’électrons N constituant le faisceau.

6. Le vide dans 'anneau de stockage n’est pas parfait, il subsiste principalement du dihydrogene, sous une
pression P = 6.107'2 bar. En utilisant un modele connu, calculer la densité particulaire n* du gaz résiduel
aT =298 K.

Les chocs entre les N électrons d’un faisceau et les molécules de gaz résiduel fait varier le nombre d’électrons
du faisceau. Pour une longueur dx de parcours, cette variation s’écrit: dN = —on*Ndzx.

7. Justifier dimensionnellement le nom de ”section efficace” donné au coefficient o.
8. En raison de ces chocs, le faisceau a une durée de vie 7, définie comme la durée pour laquelle le nombre

dN
N d’électrons a diminué de 37,8 %. Montrer que N (t) vérifie ’équation différentielle T +n*ocN =0. En

déduire 7 en fonction de o, n* et c.

9. On considere 0 = 2,0.1072% ¢m? dans le synchrotron. Calculer la durée de vie du faisceau. On donne
In(0,63) = —0, 46.



Partie II: éléments magnétiques

L’anneau de stockage n’est pas rigoureusement circulaire: il est constitué de portions linéaires et d’éléments
magnétiques qui sont des dipdles, des quadrupobles et des sextupoles.

10. Donner le nom de 'effet qui permet de mesurer un champ magnétique au laboratoire.

Les dipdles sont des aimants servant a courber la trajectoire des électrons. On considere une base cartésienne
(0,e;,€,,¢eZ). Un dipole crée un champ magnétique vertical supposé uniforme et stationnaire B = Bo&?
avec By > 0.

11. On considere un électron non relativiste pénétrant avec une vitesse de norme vg. Justifier le fait que la
norme de la vitesse est constante.

On admet que la trajectoire est circulaire de rayon
Rp. Reproduire le schéma ci-contre et ajouter sur ce
schéma, le champ magnétique, la vitesse de 1’électron
placé en M et la force magnétique. Montrer que 1’'on

a By = % (relation 1) ol p est la quantité de mou-
e

vement de ’électron.

Exprimer la pulsation wp de I’électron sur sa trajectoire.

12. La relation (1) reste valable dans le cadre de la relativité restreinte, avec une norme de la quantité
de mouvement voisine de p ~ —=. Calculer la valeur du champ magnétique permettant d’obtenir un rayon
Rp = 5,4 m pour la trajectoire? On rappelle que dans I'anneau de stockage E. = 2,7 GeV.

Les inhomogénéités de vitesse du paquet d’électrons entrainent une divergence du faisceau d’électrons, qui
doit donc étre focalisé. On utilise pour cela des quadrupoles, composés de quatre bobines disposées en carré
(figure 2).

Le champ magnétique créé par les quatre bobines peut s’écrire au voisinage de 1’origine:
B = Kye} + Kae,, olt K est une constante positive

13. On considere un faisceau d’électrons de vitesse T = vg€; avec vy > 0 possédant une faible extension
Ay > 0 autour de l'origine. Sur un schéma, dessiner le champ magnétique et la force exercée sur un électron
au point A(0, Ay/2,0) et sur un électron au point B(0, —Ay/2,0) (les points A et B sont représentés sur la
figure 2). En déduire que le faisceau est refocalisé au voisinage de l'origine grace au quadrupdle.

14. Montrer en faisant un schéma analogue & celui de la question précédente que le faisceau d’électrons de
vitesse T = vpes avec vy > 0 possédant une extension Az > 0 autour de l'origine sera cette fois défocalisé.

Pour pallier & cet inconvénient, et corriger la trajectoire des électrons, il faudra ajouter des quadrupoéles et
des sextupdles.



IV. Réflexion sur une corde (sujet E3A PC 2025)

1. On a tana(zx,t) = 7 ~ 3 —(z,t) =~ a(z,t).
x x

2

2. Le bout de corde compris entre x et x + dxr a pour masse pdz, pour accélération yey et subit son

12
poids (négligé), les forces de tension a droite T)(x + dz,t) et a gauche —?(:v, t).

2y
ot 2
On projette sur Oz: 0 = (a: + dx) cos a(x + dx, t) — T'(z) cos a(z, t)

La RFD s’écrit pde——= ? (x + dx,t) — ?(x,t)

Les angles sont petits donc cosa = 1. On a donc T'(x+dx) = T'(x) donc la norme de la tension est uniforme,
elle ne dépend pas de .

0? 0?

On projette sur Oy: udwa—g = Tsina(z + dx,t) — T'sina(x, t) soit udwa ‘;J =T(a(x + dx,t) — a(z,t)) =

Ja 0%y
T—de=T—

oz " Ox?

. o Py pdy S
On trouve donc que y(z, t) vérifie une équation de type d’Alembert 2 Tor 0. La célérité des ondes
x

/T
est donc ¢ = (| —: les ondes vont d’autant plus vite que la corde est tendue et peu dense.
I

3. Les forces de tension exercées sur ’anneau s’écrivent:
T, = Te; o
2 —_—
T = T (sin Be;, — cos Bez) = T(Bey — (1 — %)ew en " .
faisant un DL a l'ordre 2 en . P ., (e
N
Ay \Z a(0-1t)

De pluson a 8 = —a(z = 07,t) = 6—(x =07) (ici N

z .
on a > 0 et la pente de la tangente a la courbe est

négative donc a(z = 07,t) < 0).

62

T 2
Ainsi la résultante des forces de tension est F = (T-T(1 - 7) ++1Tpe; = Tﬁe—g + TBe;.
TB?> T
On a donc ?.e_}:TB (gz( = et?ey_Tﬂ_ ggyc( =07).
4. Onak= c_u' Cette relation s’appelle la relation de dispersion.

c
5. L’onde résultante est la somme des ondes incidente et réfléchie soit y(z, t) = yi(z, )4y, (x, t) = A(sin(wt—
kx) — sin(wt + kx)) = 2A cos(wt) sin(—kz) = —2A4 cos(wt) sin(kx): il s’agit d’'une OS puisque le temps et
I’espace ne sont pas dans le méme terme.

0 T
6. On a donc 8_y = —2Ak cos(wt) cos(kx) soit Fe = 5(—2/{Acos(wt))2 = 2Tk%*A? cos? (wt) soit en
x

moyenne au cours du temps < ? >=Tk>A?

oy
7. Le terme g(a) représente 1’énergie cinétique linéique de la corde.

T 0
Le terme 5(8_y)2 représente ’énergie potentielle linéique des forces de tension.
x

On a % = 2Aw sin(wt) sin(kz) et ? = —2Ak cos(wt) cos(kzx).
x

T
On remplace dans I’expression de la densité linéique d’énergie e(z, t) = §(2Aw sin(wt) sin(kz))?+ 3 (—2Ak cos(wt) cos(kz))? =

2pA%w? sin® (wt) sin® (k) +2T A%k? cos? (wt) cos (kx) On en fait la moyenne spatiale soit €(z, t) = pA2w? sin®(wt)+
TA%K? cos®(wt) = pA2w? = TE?A? car Th? = L = pu?.

Onde acoustique

0 d 0
8_p = 0 donne 8—((p0 +p1)v1) + % =0.

8. La conservation de la masse s’écrit div(p@') +



o, I

Dans 'approximation acoustique, on ne garde que les termes d’ordre 1 soit poa— + 5 = 0.
x
ov 0 0
9. On écrit ’équation d’Euler: p(ﬁ + (7.graa)7) = —graH)P soit au premier ordre Po% = _§_
x
10 1 p—
10. Le coefficient de compressibilité isentropique s’écrit xs = el R
pOP  poP—PFPy  pop1
. ovy Op
11. On a donc p; = poxsp1- Cette relation donne e _XSW quand on la remplace dans la conserva-
x
tion de la masse.
o 5z . y N 0 81)1 32p1 . 0 8’01 0 8p1
On dérive I’équation d’Euler par rapport & x: pO%(E) = 02 soit pOQ(%) = pOQ(—XSE) =
p1
ox?

. - : Ppi 1Pp 1
On obtient donc une équation de type d’Alembert: - = = 0 avec ¢ = : les ondes
Ox? 2 ot? POXS
acoustiques vont d’autant plus vite que le milieu est peu compressible et peu dense.

12. La valeur moyenne au cours du temps de la pression acoustique est nulle donc elle ne permet pas
d’expliquer une force de pression résultante sur I'obstacle.

13. Pour une OPPH  ona Z = 22 = +poc. On a donc v; = L

V1 poc’
) ; iy : 14 . ) _Po, P12, XS 2 2
On remplace dans 'expression de la densité volumique d’énergie de I'onde e(z,t) = 5 (—)°+ 5 P1 = XoPi
poc
1
car p062 = Xs-

Le terme %vl (z, t)2 correspond a I’énergie cinétique volumique.

Le terme %p% correspond donc a I’énergie potentielle volumique des forces de pression.
14. La densité volumique d’énergie pour I'onde totale est e(x,t) = xopi(cos®(wt — kx) + cos®(wt + kx)).

On en fait la moyenne temporelle et on a < e(x,t) >= xspi,-

D’apres les questions précédentes, la pression de radiation est égale a la densité volumique moyenne d’énergie
. 2
soit Prqd = XsP1o-

15. L’énoncé nous indique que p1p (Pamplitude de la surpression) est proportionnelle & U,. On a donc P,4q
proportionnelle & UZ2.

De plus la pression de radiation est égale a la force exercée sur la balance divisée par la surface et la force
exercée par la balance est égale a mg.

On a donc la masse m qui est proportionnelle & U2, c’est ce que je vérifie graphiquement ci-dessous.

1 import numpy as np 5
2 import matplotlib.pyplot as plt *

[
=

4 Uecarre=np.array([4,4.5,5,6,6.5,7,8,8.5,9,9.5,18])**2 *
5 m=np.array([5,6,7,18,11,14,17,19,21,23,26])
o plt.plot(Uecarre,m,'*")

7 plt.grid()

A plt.xlabel('Ues en V au carre ') *
3 plt.ylabel('m en mg') 10 *
10 plt.show(]l -

men mg
s
(%, ]

20 40 =] 80 100
Ue en V au carmre

V. Synchrotron SOLEIL (sujet CCINP MP 2025)

1. La relation entre le champ électrique et le potentiel s’écrit E=— gradV , elle traduit le fait que le champ
électrique est dirigé des forts vers les faibles potentiels et qu’il est d’autant plus intense que les différences
de potentiels sont grandes.

L’énergie potentielle d'une charge ¢ dans un potentiel V est E, = ¢V

2. Soit un électron de charge —e de vitesse nulle soumis a la différence de potentiel V5 — V;. Son énergie
cinétique sur ’électrode de potentiel V; est nulle, on cherche son énergie cinétique sur 1’électrode de potentiel



Va.

Cet électron subit son poids qui est négligeable et la force électrique qui est conservative donc son énergie
mécanique est constante, on a: E,, =04 (—e)Vy = E. + (—e)Va soit E. = e(Va — V7).

E.
AN: Vo, — V) = —= 1,0.10° V.

me¥ E. 2.100.106¢2
3. Ona E, = soit v = ¢ = v400¢2 = 20c > i: ce n’est pas possible de
Me 5,110 10

trouver que la vitesse des électrons est supérieure a la vitesse de la lumiere, donc il faut traiter ces électrons
du point de vue relativiste.

E 100.108
4. Ona E, = (y— 1)mec? soit v = 1 =1+ ——— =200.
na (v — 1)mec” soit + = + 51107
1 . 1
On a alors y = ——=soit v =cy/1 — 5 = ¢
1-% v
d
5. La relation entre l'intensité du courant électrique et la charge s’écrit I = d_(z = Q Pour connaitre la
T

charge présente dans I’anneau de stockage, il faut calculer le temps mis par les électrons pour parcourir tout

2rR  0,4.2.3.60
I’anneau de stockage soit la distance 7 = 27 R a la vitesse c. AinsiQ = It =1 7 3108 - 48.107° C.
c .

4100 . Q 48.108
O déduit 1 bre d’élect N=—-=———"—
n en déduit le nombre d’électrons 16.10-19

6. On applique le modele du gaz parfait soit PV = n,esRT. La densité particulaire est définie par
o _ NmotesNa _ PNa _ 6.1071°.10°.6.10%

= 24.10" électrons.

n" = v T 3300 =1,5.10'3 molecules.m™3.
dN 1 1
7. [o] = [n Ndac] [%] == m?: c’est bien homogene & une surface.
. . . s o AN o dT . o
8. La relation donnée dN = —on*Ndx conduit a ’équation T —on NE = —on*Nc soit I’équation
dN .
différentielle — + on*cN = 0 dont la solution s’écrit N(x) = Noe 7™ .
A linstant t =0 on a N = Ng.
. onter . In0, 63
On cherche Vinstant 7 pour lequel N(7) = (1 — 0,37)Ny = Npe soit T = ————.
on*c
0,5 1
9. AN: 7= ’ = =4.10° s

2.10723.10-4.3.108.2.1012  24.107
10. On peut mesurer un champ magnétique en utilisant une sonde a effet Hall.

11. L’électron subit: la force magnétique F = —¢TATB et son poids négligé devant la force magnétique.
La force magnétique est perpendiculaire au mouvement, elle ne travaille pas donc le mouvement de 1’électron
est uniforme, sa vitesse est constante en norme.

—\ @®° On applique le PFD a I’électron: me = ?
d 2
avec o ?;g? d—:? = —U—Iger pour un mou-

vement circulaire uniforme

avec F = —eTAB = —evpes ABye; = —evgByer:
la force est centripete

2
On projette sur &;: _Me% _ —evgB soit Rp = Meto donc By = Meo _ P .
B €Dy eRB eRB
2R 2Tme ) 2 B
On en déduit la période de 1’électron T = B _ 2TMe ot 1a pulsation wp = 2
v eBy T Me
E. 2,7.10° 10 5
12. AN: By = -2 - - 29T

eRp eRBc 5,4.3.108 23 3



13. Au point A(0,Ay/2,0) le champ magnétique o

sécrit B = KAy/2e; avec KAy/2 > 0. Au — | 7

point B(0,—Ay/2,0) le champ magnétique s’écrit AIC
= —KAy/2e;. On en déduit le schéma suiv- “Fm

a_>nt en tracant les forces magnétiques sur 1’électron

F,, = —e%A?. 5

Les forces exercées sur A et B ramenent les électrons

vers le centre comme on le souhaite. Fm

—
vao
B

14. Au point C(Ax/2,0,0) le champ magnétique =4
séerit B = KAz/2e, avec KAz/2 > 0. Au
point D(—Az/2,0,0) le champ magnétique s’écrit
B = —KAz/2g). On en déduit le schéma suiv- l
c

ant en tracant les forces magnétiques sur 1’électron =

D
F, = —eUAB. @ 5 —

. 21 . , — 0 Fm o
Les forces exercées sur C et D éloignent les électrons B v

du centre contrairement a ce que 1’on souhaite.

VI. Instruments de musique (arrangement de centrale PC 2010)

1. On étudie le systéme élémentaire compris entre x et = + dr au repos et compris entre  + u(x,t) et
x + dx + u(z + dz,t) en présence d’une onde.

Sa longueur au repos est lyp = dx
ou

Sa longueur en présence d'une onde est | = z + dz + u(x,t) — x — u(z, t) = dr(l + 8_)
i
l—lp dz(1+%%) —dz 9
L’allongement relatif s’écrit donc 0~ il o) T .
lo dx or
ou - R L
e > 0 cela signifie que le systeme s’est alongé.
x

ol

2. Comme indiqué dans I’énoncé, la force exercée en = par le systéme a sa droite est ?(:v, t) = ESl—e_gC> =
0

0
ESa—z(a:, t)es.
3. [p]=kgm™3
F -2 -2 -1 -2
[E] = [5] =kgm.s"-.m~ - =kgm”".s
On veut exprimer la vitesses des ondes soit [¢] = [E®p®] donne m.s™' = (kg.m™t.s72)%(kg.m3)? =

kgoth m—o38 g2,

Par identification on a:
pour lesm: 1 = —a — 30
pour les kg: 0 =a+f

pour les s: —1 = =2«

1 1 |E
On obtient donc a = ok 8= —5 soit ¢ = 4/ —: 'onde va d’autant plus vite que le milieu est rigide et peu
p

dense.
4. Soit le systeme élémentaire compris, au repos, entre x et x + dz: il subit & droite la force 17;(:10 +dz,t) =

0 0
ES—U(I + dz,t)e; et A gauche la force F)'g(x,t) = —ES—u(x,t)EZ.
ox Ox
2
u
Ce systéme élémentaire a pour masse pSdx et pour accélération — (z,t)e;.

ot2

Le PFD appliqué a ce systeme donne en projection sur Ox:

10



0*u du ou 0?u
dea:W(x,t) = ES%(I +dx,t) — ES%(x,t) = EdeW(I’ t).

%u  p O%u

9w BoE - 0: on reconnait une équation de d’Alembert avec
x

On obtient donc I’équation de propagation

|E
pour vitesse des ondes ¢ = / —. La relation de dispersion est de la forme k = )
p c

5. La solution proposée correspond a une onde stationnaire car les variables de temps et d’espace ne sont
pas dans le méme terme. Ce choix se justifie par le fait que le milieu de propagation est de taille finie.
6. On applique les conditions aux limites: u(z = 0,t) = 0 = ug sin ¢ sin(wt) qui implique que sin ¢ = 0 soit
¢ =0.

n
On a aussi u(z = L,t) = 0 = ug sin(kL) sin(wt) qui implique sin(kL) = 0 soit k, L = nm ou encore k, = il

L
pour n < n.

. . 2 c ne
Par la suite les relations &k, = — et f,, = — donnent \, = — et f,, = —.
node fondanent al prem er harnoni que

R O\
~_ - NN\

L=A1/2 L=2N2/ 2

7. On calcule la célérité des ondes dans le bronze et dans ’acier:

[101T 10 .
Cbronze = m = T =3300 m.s™ .

1610
Cocier = 1/% =/2.10.10% = v/2310% = 4200 m.s ' > cpronse.

Les fréquences émises sont proportionnelles a la célérité donc le glockenspiel en acier émet un son plus aigu
(fréquences plus élevées) que celui en bronze.

c c 4200
. Les fré i lal de la f " = N— — =
8 es fréquences émises par la lame sont de la forme f, n2 7 avec 5T 5.0.2

fréquences émises sont donc des multiples de 1050 H z pour les ondes longitudinales étudiées. Les ondes de
500 Hz ne sont pas longitudinales.

= 1050 Hz. Les

9. On remplace la solution proposée dans I’équation de propagation avec:

>y 2
0%y oty
i —k%y(z,t) et e (=k*?y(z,t) = k4y(x,t).
9 v, 4 1202
On a donc —w?y(z,t) + Ek y(x,t) soit k* = 27 Attention, 1’équation de propagation n’est pas une
c

w
équation de d’Alembert donc la relation de dispersion n’est pas k = —.
c

10. La lame est fixe a ses deux extrémités donc on a comme précédemment y(x = 0,t) = y(z = L, t) qui

imposent ¢ =0 et k, = %
12w2 nw 2v/3w 2m\/327 f nw
O lique la relation de dispersion ky = —2 = (—)* soit k2 = == t o= (—)?
n applique la rezzlon e dispersion k,, 22 (L) soit k; o > (L) qui
donne f, = n2 "2 . fréquences de résonance liées aux ondes transversales sur les lames.
4/3L2
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