
PC - Lycée Dumont D’Urville

DS 6 de physique
Calculatrices interdites

Le sujet comprend trois problèmes indépendants à traiter dans l’ordre de votre choix.Il est demandé de
numéroter les pages au format i/N où i est le numéro de la page et N le nombre de pages.

Il est demandé un effort de présentation (tirer un trait entre chaque question et encadrer les résultats) et de
rédaction (prendre soin de nommer les lois utilisées, les hypothèses pour les appliquer et expliquer clairement).

I. Pression de radiation

Réflexion sur une corde

Une corde vibrante au repos de masse linéique µ est
tendue avec la tension de norme T (x). En négligeant
l’effet de la pesanteur, on considère la corde hori-
zontale le long de l’axe Ox. On s’intéresse aux pe-
tits mouvements transversaux. Le point de la corde
d’abscisse x au repos se déplace à l’instant t de y(x, t)
selon l’axe Oy. On considère des petits mouvements,
c’est-à-dire que l’angle α que fait la tangente de la
corde avec l’horizontale est petit.

Oy

Oxx x+dx

y(x+dx,t)

y(x,t)
α(x,t)

α(x+dx,t)

1. Démontrer la relation entre α(x, t) et une dérivée partielle de y(x, t).

2. A l’aide du principe fondamental de la dynamique appliqué au bout de corde compris entre x et x+ dx,
montrer que la norme de la tension est uniforme le long de la corde et montrer que y(x, t) vérifie une équation

de la forme
∂2y

∂x2
− 1

c2
∂2y

∂t2
= 0. Exprimer c en fonction des données.

On fixe un point de la corde à l’aide d’un petit anneau de diamètre intérieur égal au diamètre de la corde.
Cet anneau est maintenu dans une position fixe en x = 0. Au niveau de l’anneau, les ondes se réfléchissent.
En l’absence d’onde, la force exercée par la corde sur l’anneau est nulle. Lorsqu’une onde transversale se
propage le long de la corde, la corde exerce des forces

−→
T1 et

−→
T2 respectivement à gauche et à droite sur

l’anneau. Les normes de ces forces sont identiques (||−→T1|| = ||−→T2|| = T ).

3. Exprimer la force
−→
F exercée par la corde sur l’anneau en fonction de la tension de la corde T et de

l’angle β entre
−→
T2 et l’horizontale (β est un angle non orienté et positif).

Justifier alors que cette force s’exprime en fonction de la dérivée partielle de
∂y

∂x
(x = 0−) (en faisant un DL

au second ordre en β) comme
−→
F =

T

2
(
∂y

∂x
(x = 0−))2−→ex − T

∂y

∂x
(x = 0−)−→ey .

Soit une onde sinusöıdale progressive incidente solution de l’équation (1): yi(x, t) = A sin(ωt− kx).

L’onde incidente se réfléchit sur l’anneau en x = 0 et donne naissance à une onde réfléchie de la forme:

yr(x, t) = −A sin(ωt+ kx).

4. Rappeler (sans démonstration) la relation entre les grandeurs suivantes : célérité de l’onde c, pulsation
de l’onde ω et la norme du vecteur d’onde k.

5. Donner l’expression de l’onde résultante pour les x < 0. Préciser alors le type d’onde qui en résulte.

Donnée: sin a− sin b = 2 cos(
a+ b

2
) sin(

a− b

2
).
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6. Déterminer la projection de la force sur l’axe Ox dans le cas d’une telle onde. Déterminer alors
l’expression de sa valeur moyenne temporelle <

−→
F .−→ex >.

On donne la densité linéique d’énergie (énergie par unité de longueur de corde): ǫ(x, t) =
µ

2
(
∂y

∂t
)2+

T

2
(
∂y

∂x
)2.

7. Donner la signification physique des deux termes qui figurent dans cette expression. Relier la moyenne
spatiale de l’énergie linéique de l’onde résultante à l’expression de la valeur moyenne de la projection sur
l’axe Ox de la force exercée par la corde sur l’anneau.

Dans ce cas, on définit la pression de radiation comme Prad =
<

−→
F .−→ex >

S
avec S la section de la corde.

En divisant la moyenne spatiale de cette énergie linéique de l’onde par la section de la corde, on trouve
l’énergie volumique de l’onde. On trouve alors un résultat général entre la pression de radiation et la densité
volumique moyenne d’énergie des ondes dans tous les domaines: électromagnétisme, acoustique,...

Onde acoustique

Suite à la vérification de l’existence d’une pression de radiation en électromagnétisme, son analogue acous-
tique a été recherché par les physiciens. La pression de radiation acoustique a alors fait l’objet de nombreux
travaux théoriques et expérimentaux. Cette pression déforme notamment l’interface entre deux milieux
comme on peut le voir sur l’image suivante.

L’air est assimilé à un gaz parfait, initialement au repos et qui en l’absence de toute perturbation possède
une masse volumique ρ0, une pression P0 et une température T0 uniformes. On étudie la propagation d’onde
plane de célérité c selon l’axe Ox. Le passage de l’onde perturbe l’équilibre. On définit les grandeurs suivantes
en un point d’abscisse x à l’instant t:

- la pression P (x, t) = P0 + p1(x, t) pression acoustique telle que |p1(x, t)| << P0

- la masse volumique ρ(x, t) = ρ0 + ρ1(x, t) avec |ρ1(x, t)| << ρ0

- la projection de la vitesse particulaire sur l’axe Ox, v(x, t) = 0 + v1(x, t) avec |v1(x, t)| << c.

On note χS le coefficient de compressibilité isentropique.

8. Établir l’équation linéarisée de conservation de la masse dans le cas d’une propagation unidirectionnelle
selon Ox en fonction de ρ0, ρ1(x, t) et v1(x, t).

9. Écrire la loi linéarisée de la conservation de la quantité de mouvement dans le cas d’une propagation
unidirectionnelle selon Ox en fonction de ρ0, v1(x, t) et p1(x, t).

10. Donner l’équation isentropique linéarisée reliant ρ1, ρ0, χS et p1.

11. En déduire que la surpression vérifie une équation de la forme
∂2p1
∂x2

− 1

c2
∂2p1
∂t2

= 0. Exprimer c en

fonction des données.

On étudie une onde plane progressive harmonique d’expression p1(x, t) = p10 cos(ωt − kx) provenant des
x < 0. Un obstacle est présent en x = 0.

12. Expliquer pourquoi la pression acoustique ne permet pas d’expliquer le phénomène de pression de
radiation sur l’obstacle.

On propose d’utiliser l’égalité citée précédemment selon laquelle la pression de radiation est égale à la
moyenne temporelle de l’énergie volumique de l’onde. On donne la densité volumique d’énergie d’une onde

acoustique: e(x, t) =
ρ0
2
v1(x, t)

2 +
χS

2
p1(x, t)

2.

13. Donner la signification physique des deux termes qui figurent dans cette expression.. Dans le cas de
l’onde plane progressive incidente p1(x, t), montrer que e(x, t) peut s’écrire e(x, t) = χSp1(x, t)

2.

14. En considérant l’onde réfléchie sur l’obstacle d’expression p10 cos(ωt+ kx), déterminer la densité volu-
mique d’énergie de l’onde totale (incidente et réfléchie). En déduire l’expression de la pression de radiation
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acoustique en fonction de χS et p10.

On souhaite maintenant vérifier expérimentalement cette formule.

On réalise le protocole suivant : on émet une onde ultrasonore avec un émetteur d’ultrason fonctionnant à une
fréquence de 40 kHz. Le générateur basse fréquence alimente l’émetteur en tension sinusöıdale d’amplitude
Ue. On considère que l’amplitude de la pression acoustique de l’onde ultrasonore est proportionnelle à Ue.
On place l’émetteur face à une balance de précision comme le précise la photo ci-dessous.

En présence d’une onde ultrasonore, la balance affiche une masse m. La masse indiquée donne une mesure de
la force exercée par la pression de radiation sur le plateau de la balance. On fixe la distance entre l’émetteur
et la balance (3 cm). On mesure alors la masse m en faisant varier l’amplitude Ue. On obtient les résultats
suivants :

15. À partir des données de l’expérience, démontrer que celles-ci sont compatibles avec le résultat de la
question précédente. Une analyse graphique est attendue.

II. Instruments de musique

Cet exercice étudie certains instruments à percussion tels que le xylophone, le marimba ou le glockenspiel.
Ils sont formés de lames parallélépipédiques de bois ou de métal. Chacune d’elles produit, lorsqu’on la frappe
avec une baguette, un son de hauteur déterminée.

Glockenspiel Marimba

On envisage les vibrations longitudinales d’une lame
de longueur L. La matière située au repos dans le
plan d’abscisse x se met en mouvement suite à une
excitation. Elle occupe à l’instant t le plan d’abscisse
x + u(x, t) et est soumise, de la part de la matière

située à sa droite, à une force
−→
Fd = F (x, t)−→ex.

L

b

h

Oxx x+u(x,t)

u(x,t)

ex

Oy

On note ρ la masse volumique et E le module d’Young
du matériau dont on rappelle la définition : pour
porter de l0 à l0+ δl la longueur d’une tige de section
S, il faut exercer sur ses extrémités une force égale à

ES
δl

l0
.

Données:

bronze acier
ρ (SI) 9000 8000

E (SI) 10, 0.1010 16.1010
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1. On considère le système infinitésimal compris entre x et x+dx au repos. En présence d’une perturbation,
la tranche en x s’est déplacée de u(x, t) et la tranche en x+ dx s’est déplacée de u(x+ dx, t). Montrer que

son allongement relatif s’écrit
∂u

∂x
(x, t). Que signifie physiquement le cas où

∂u

∂x
(x, t) > 0?

2. En déduire que
−→
Fd(x, t) = +ES

∂u

∂x
(x, t)−→ex.

3. Dans cette barre la vitesse de propagation des ondes est de la forme c = Eαρβ . Déterminer par une
analyse dimensionnelle les valeurs numériques de α et β. Commenter le résultat.

4. Déduire de l’ application du PFD au système infinitésimal compris entre x et x + dx l’équation de
propagation vérifiée par u(x, t). Rappeler sans démonstration la relation de dispersion.

5. On recherche des solutions de la forme u(x, t) = u0 sin(kx+φ) sin(ωt). De quel type de solution s’agit-il?
Justifier ce choix.

6. Les deux extrémités de la barre en x = 0 et en x = L sont fixes soit immobiles. Déterminer la valeur de
φ et les valeurs possibles pour kn ainsi que les valeurs possibles pour la longueur d’onde λn et la fréquence
fn de l’onde. Représenter l’onde dans le mode fondamental et pour le premier harmonique.

7. On dispose de deux lames de glockenspiel de même longueur, l’une en acier et l’autre en bronze. Laquelle
joue des notes plus graves? Justifier votre réponse. Donnée:

√
2 = 1, 4.

8. Une lame de glockenspiel en acier de longueur L = 20, 0 cm émet un son de fréquence égale à 600 Hz.
Montrer qu’il ne peut pas résulter de l’excitation d’une onde longitudinale.

Les fréquences émises s’expliquent par les petits mouvements transversaux de la lame. On note y(x, t) les
petits déplacements verticaux au point d’abscisse x à l’instant t et on admet que y(x, t) vérifie l’équation de
propagation:

∂2y

∂t2
(x, t) +

c2b2

12

∂4y

∂x4
(x, t) = 0

où b est la dimension de la lame selon l’axe Oy.

9. On recherche des solutions de la forme y(x, t) = y0 sin(kx + φ) sin(ωt). Déterminer la relation de
dispersion entre k et ω pour ces ondes.

10. Lorsque la lame est fixe à ses deux extrémités, montrer que les fréquences possibles s’écrivent fn =

n2 πcb

4
√
3L2

.

III. Etude du synchrotron SOLEIL

Un synchrotron est un instrument électromagnétique de grande taille destiné à l’accélération de particules
chargées. Le rayonnement synchrotron est un rayonnement électromagnétique émis par une particule chargée
possédant une accélération. Ce rayonnement est utilisé pour des analyses physiques. Dans le synchrotron
SOLEIL, situé à Saclay, des électrons, de masse notée me et de charge −e, accélérés à une vitesse proche de
celle de la lumière, sont déviés par des champs magnétiques.

Bien que les données soient fournies avec deux chiffres significatifs, les résultats numériques calculés seront
fournis, sauf indication contraire, avec UN SEUL chiffre significatif.

On donne le schéma général du synchrotron SOLEIL (Figure 1):

4



Les deux parties de ce problème sont indépendantes.

Partie I : généralités

Des électrons non-relativistes, émis sans vitesse initiale, sont accélérés linéairement par un champ électrostatique
uniforme et unidirectionnel

−→
E = E−→ex.

1. Rappeler la relation qui lie le champ électrostatique au potentiel électrostatique V . Donner le sens
physique de cette relation et en déduire l’énergie potentielle électrostatique de l’électron en fonction de e et
de V.

2. Calculer la différence de potentiel nécessaire pour obtenir une énergie cinétique finale Ec = 1, 0 keV .
Justifier.

3. Dans la zone nommée Linac du synchrotron SOLEIL (voir figure 1), les électrons sont accélérés jusqu’à
une énergie cinétique Ec = 100 MeV . Calculer leur vitesse v et en déduire que cet électron est relativiste
et sa vitesse ne peut donc pas être calculée à l’aide de la forme de l’énergie cinétique utilisée en mécanique
classique.

4. Les électrons étant relativistes, leur énergie cinétique s’écrit : Ec = (γ − 1)mec
2 où γ =

1
√

1− v2

c2

est

appelé facteur de Lorentz de l’électron. Calculer ce facteur. En déduire la vitesse approchée de ces électrons.

Les électrons sont ensuite accélérés jusqu’à Ec = 2, 7 GeV grâce à un autre accélérateur nommé booster,
puis libérés dans l’anneau de stockage. Leur vitesse est alors assimilable à celle de la lumière.

5. L’intensité du courant circulant dans l’anneau de stockage, assimilé à un cercle de rayon R = 57 m, vaut
à un instant donné i = 0, 43 A. Evaluer le temps mis par un électron pour parcourir l’anneau de stockage et
en déduire la charge totale circulant dans l’anneau et le nombre d’électrons N constituant le faisceau.

6. Le vide dans l’anneau de stockage n’est pas parfait, il subsiste principalement du dihydrogène, sous une
pression P = 6.10−13 bar. En utilisant un modèle connu, calculer la densité particulaire n∗ du gaz résiduel
à T = 298 K.

Les chocs entre les N électrons d’un faisceau et les molécules de gaz résiduel fait varier le nombre d’électrons
du faisceau. Pour une longueur dx de parcours, cette variation s’écrit: dN = −σn∗Ndx.

7. Justifier dimensionnellement le nom de ”section efficace” donné au coefficient σ.

8. En raison de ces chocs, le faisceau a une durée de vie τ , définie comme la durée pour laquelle le nombre

N d’électrons a diminué de 37, 8 %. Montrer que N(t) vérifie l’équation différentielle
dN

dt
+ n∗σcN = 0. En

déduire τ en fonction de σ, n∗ et c.

9. On considère σ = 2, 0.10−23 cm2 dans le synchrotron. Calculer la durée de vie du faisceau. On donne
ln(0, 63) = −0, 46.
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Partie II: éléments magnétiques

L’anneau de stockage n’est pas rigoureusement circulaire: il est constitué de portions linéaires et d’éléments
magnétiques qui sont des dipôles, des quadrupôles et des sextupôles.

10. Donner le nom de l’effet qui permet de mesurer un champ magnétique au laboratoire.

Les dipôles sont des aimants servant à courber la trajectoire des électrons. On considère une base cartésienne
(O,−→ex,−→ey ,−→ez). Un dipôle crée un champ magnétique vertical supposé uniforme et stationnaire

−→
B = B0

−→ez
avec B0 > 0.

11. On considère un électron non relativiste pénétrant avec une vitesse de norme v0. Justifier le fait que la
norme de la vitesse est constante.

On admet que la trajectoire est circulaire de rayon
RB. Reproduire le schéma ci-contre et ajouter sur ce
schéma, le champ magnétique, la vitesse de l’électron
placé en M et la force magnétique. Montrer que l’on

a B0 =
p

eRB

(relation 1) où p est la quantité de mou-

vement de l’électron.

er
eθ

O
ez

RB

M

Exprimer la pulsation ωB de l’électron sur sa trajectoire.

12. La relation (1) reste valable dans le cadre de la relativité restreinte, avec une norme de la quantité

de mouvement voisine de p ≈ Ec

c
. Calculer la valeur du champ magnétique permettant d’obtenir un rayon

RB = 5, 4 m pour la trajectoire. On rappelle que dans l’anneau de stockage Ec = 2, 7 GeV .

Les inhomogénéités de vitesse du paquet d’électrons entrâınent une divergence du faisceau d’électrons, qui
doit donc être focalisé. On utilise pour cela des quadrupôles, composés de quatre bobines disposées en carré
(figure 2).

Le champ magnétique créé par les quatre bobines peut s’écrire au voisinage de l’origine:

−→
B = Ky−→ex +Kx−→ey où K est une constante positive

13. On considère un faisceau d’électrons de vitesse −→v = v0−→ez avec v0 > 0 possédant une faible extension
∆y > 0 autour de l’origine. Sur un schéma, dessiner le champ magnétique et la force exercée sur un électron
au point A(0,∆y/2, 0) et sur un électron au point B(0,−∆y/2, 0) (les points A et B sont représentés sur la
figure 2). En déduire que le faisceau est refocalisé au voisinage de l’origine grâce au quadrupôle.

14. Montrer en faisant un schéma analogue à celui de la question précédente que le faisceau d’électrons de
vitesse −→v = v0−→ez avec v0 > 0 possédant une extension ∆x > 0 autour de l’origine sera cette fois défocalisé.

Pour pallier à cet inconvénient, et corriger la trajectoire des électrons, il faudra ajouter des quadrupôles et
des sextupôles.
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IV. Réflexion sur une corde (sujet E3A PC 2025)

1. On a tanα(x, t) =
y(x+ dx, t) − y(x, t)

dx
≈ ∂y

∂x
(x, t) ≈ α(x, t).

2. Le bout de corde compris entre x et x + dx a pour masse µdx, pour accélération
∂2y

∂t2
−→ey et subit son

poids (négligé), les forces de tension à droite
−→
T (x+ dx, t) et à gauche −−→

T (x, t).

La RFD s’écrit µdx
∂2y

∂t2
−→ey =

−→
T (x+ dx, t)−−→

T (x, t)

On projette sur Ox: 0 = T (x+ dx) cosα(x+ dx, t) − T (x) cosα(x, t)

Les angles sont petits donc cosα ≈ 1. On a donc T (x+dx) = T (x) donc la norme de la tension est uniforme,
elle ne dépend pas de x.

On projette sur Oy: µdx
∂2y

∂t2
= T sinα(x + dx, t) − T sinα(x, t) soit µdx

∂2y

∂t2
= T (α(x + dx, t) − α(x, t)) ≈

T
∂α

∂x
dx = T

∂2y

∂x2

On trouve donc que y(x, t) vérifie une équation de type d’Alembert
∂2y

∂x2
− µ

T

∂2y

∂t2
= 0. La célérité des ondes

est donc c =

√

T

µ
: les ondes vont d’autant plus vite que la corde est tendue et peu dense.

3. Les forces de tension exercées sur l’anneau s’écrivent:

−→
T1 = T−→ex
−→
T2 = T (sinβ−→ey − cosβ−→ex) = T (β−→ey − (1 − β2

2
)−→ex en

faisant un DL à l’ordre 2 en β.

De plus on a β = −α(x = 0−, t) =
∂y

∂x
(x = 0−) (ici

on a β > 0 et la pente de la tangente à la courbe est
négative donc α(x = 0−, t) < 0).

T1

T1

Ox

Oy

β

α(0−,t)

Ainsi la résultante des forces de tension est
−→
F = (T − T (1− β2

2
)−→ex + Tβ−→ey =

Tβ2

2
−→ex + Tβ−→ey.

On a donc
−→
F .−→ex =

Tβ2

2
=

T

2
(
∂y

∂x
(x = 0−))2 et

−→
F .−→ey = Tβ = −T

∂y

∂x
(x = 0−).

4. On a k =
ω

c
. Cette relation s’appelle la relation de dispersion.

5. L’onde résultante est la somme des ondes incidente et réfléchie soit y(x, t) = yi(x, t)+yr(x, t) = A(sin(ωt−
kx) − sin(ωt + kx)) = 2A cos(ωt) sin(−kx) = −2A cos(ωt) sin(kx): il s’agit d’une OS puisque le temps et
l’espace ne sont pas dans le même terme.

6. On a donc
∂y

∂x
= −2Ak cos(ωt) cos(kx) soit

−→
F .−→ex =

T

2
(−2kA cos(ωt))2 = 2Tk2A2 cos2(ωt) soit en

moyenne au cours du temps <
−→
F .−→ex >= Tk2A2

7. Le terme
µ

2
(
∂y

∂t
)2 représente l’énergie cinétique linéique de la corde.

Le terme
T

2
(
∂y

∂x
)2 représente l’énergie potentielle linéique des forces de tension.

On a
∂y

∂t
= 2Aω sin(ωt) sin(kx) et

∂y

∂x
= −2Ak cos(ωt) cos(kx).

On remplace dans l’expression de la densité linéique d’énergie ǫ(x, t) =
ρ

2
(2Aω sin(ωt) sin(kx))2+

T

2
(−2Ak cos(ωt) cos(kx))2 =

2ρA2ω2 sin2(ωt) sin2(kx)+2TA2k2 cos2(ωt) cos2(kx). On en fait la moyenne spatiale soit ǫ(x, t) = ρA2ω2 sin2(ωt)+

TA2k2 cos2(ωt) = ρA2ω2 = Tk2A2 car Tk2 = Tω2

c2
= ρω2.

Onde acoustique

8. La conservation de la masse s’écrit div(ρ−→v ) +
∂ρ

∂t
= 0 donne

∂

∂x
((ρ0 + ρ1)v1) +

∂ρ1
∂t

= 0.
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Dans l’approximation acoustique, on ne garde que les termes d’ordre 1 soit ρ0
∂v1
∂x

+
∂ρ1
∂t

= 0.

9. On écrit l’équation d’Euler: ρ(
∂−→v
∂t

+ (−→v .
−−→
grad)−→v ) = −−−→

gradP soit au premier ordre ρ0
∂v1
∂t

= −∂p1
∂x

.

10. Le coefficient de compressibilité isentropique s’écrit χS =
1

ρ

∂ρ

∂P
=

1

ρ0

ρ− ρ0
P − P0

=
ρ1
ρ0p1

.

11. On a donc ρ1 = ρ0χSp1. Cette relation donne
∂v1
∂x

= −χS

∂p1
∂t

quand on la remplace dans la conserva-

tion de la masse.

On dérive l’équation d’Euler par rapport à x: ρ0
∂

∂x
(
∂v1
∂t

) = −∂2p1
∂x2

soit ρ0
∂

∂t
(
∂v1
∂x

) = ρ0
∂

∂t
(−χS

∂p1
∂t

) =

−∂2p1
∂x2

On obtient donc une équation de type d’Alembert:
∂2p1
∂x2

− 1

c2
∂2p1
∂t2

= 0 avec c =

√

1

ρ0χS

: les ondes

acoustiques vont d’autant plus vite que le milieu est peu compressible et peu dense.

12. La valeur moyenne au cours du temps de la pression acoustique est nulle donc elle ne permet pas
d’expliquer une force de pression résultante sur l’obstacle.

13. Pour une OPPH+ on a Z =
p1
v1

= +ρ0c. On a donc v1 =
p1
ρ0c

.

On remplace dans l’expression de la densité volumique d’énergie de l’onde e(x, t) =
ρ0
2
(
p1
ρ0c

)2+
χS

2
p21 = χ0p

2
1

car
1

ρ0c2
= χS .

Le terme
ρ0
2
v1(x, t)

2 correspond à l’énergie cinétique volumique.

Le terme
χS

2
p21 correspond donc à l’énergie potentielle volumique des forces de pression.

14. La densité volumique d’énergie pour l’onde totale est e(x, t) = χ0p
2
10(cos

2(ωt − kx) + cos2(ωt + kx)).
On en fait la moyenne temporelle et on a < e(x, t) >= χSp

2
10.

D’après les questions précédentes, la pression de radiation est égale à la densité volumique moyenne d’énergie
soit Prad = χSp

2
10.

15. L’énoncé nous indique que p10 (l’amplitude de la surpression) est proportionnelle à Ue. On a donc Prad

proportionnelle à U2
e .

De plus la pression de radiation est égale à la force exercée sur la balance divisée par la surface et la force
exercée par la balance est égale à mg.

On a donc la masse m qui est proportionnelle à U2
e , c’est ce que je vérifie graphiquement ci-dessous.

V. Synchrotron SOLEIL (sujet CCINP MP 2025)

1. La relation entre le champ électrique et le potentiel s’écrit
−→
E = −−−→

gradV , elle traduit le fait que le champ
électrique est dirigé des forts vers les faibles potentiels et qu’il est d’autant plus intense que les différences
de potentiels sont grandes.

L’énergie potentielle d’une charge q dans un potentiel V est Ep = qV .

2. Soit un électron de charge −e de vitesse nulle soumis à la différence de potentiel V2 − V1. Son énergie
cinétique sur l’électrode de potentiel V1 est nulle, on cherche son énergie cinétique sur l’électrode de potentiel

8



V2.

Cet électron subit son poids qui est négligeable et la force électrique qui est conservative donc son énergie
mécanique est constante, on a: Em = 0 + (−e)V1 = Ec + (−e)V2 soit Ec = e(V2 − V1).

AN: V2 − V1 =
Ec

e
= 1, 0.103 V .

3. On a Ec =
mev

2

2
soit v =

√

2Ec

me

=

√

2.100.106c2

5, 1.105
=

√
400c2 = 20c >

c

10
: ce n’est pas possible de

trouver que la vitesse des électrons est supérieure à la vitesse de la lumière, donc il faut traiter ces électrons
du point de vue relativiste.

4. On a Ec = (γ − 1)mec
2 soit γ = 1 +

Ec

mec2
= 1 +

100.106

5, 1.105
= 200.

On a alors γ =
1

√

1− v2

c2

soit v = c

√

1− 1

γ2
≈ c.

5. La relation entre l’intensité du courant électrique et la charge s’écrit I =
dq

dt
=

Q

τ
. Pour connâıtre la

charge présente dans l’anneau de stockage, il faut calculer le temps mis par les électrons pour parcourir tout

l’anneau de stockage soit la distance τ = 2πR à la vitesse c. AinsiQ = Iτ = I
2πR

c
=

0, 4.2.3.60

3.108
= 48.10−8 C.

On en déduit le nombre d’électrons N =
Q

e
=

48.10−8

1, 6.10−19
= 24.1011 électrons.

6. On applique le modèle du gaz parfait soit PV = nmolesRT . La densité particulaire est définie par

n∗ =
nmolesNa

V
=

PNa

RT
=

6.10−13.105.6.1023

8.300
= 1, 5.1013 molecules.m−3.

7. [σ] = [
dN

n∗Ndx
] = [

1

ndx
] =

1

m−3.m
= m2: c’est bien homogène à une surface.

8. La relation donnée dN = −σn∗Ndx conduit à l’équation
dN

dt
= −σn∗N

dx

dt
= −σn∗Nc soit l’équation

différentielle
dN

dt
+ σn∗cN = 0 dont la solution s’écrit N(x) = N0e

−σn∗ct.

A l’instant t = 0 on a N = N0.

On cherche l’instant τ pour lequel N(τ) = (1− 0, 37)N0 = N0e
−σn∗cτ soit τ = − ln 0, 63

σn∗c
.

9. AN: τ =
0, 5

2.10−23.10−4.3.108.2.1012
=

1

24.10−7
= 4.105 s.

10. On peut mesurer un champ magnétique en utilisant une sonde à effet Hall.

11. L’électron subit: la force magnétique
−→
F = −e−→v Λ

−→
B et son poids négligé devant la force magnétique.

La force magnétique est perpendiculaire au mouvement, elle ne travaille pas donc le mouvement de l’électron
est uniforme, sa vitesse est constante en norme.

B

er

v

R

eθ
F

On applique le PFD à l’électron: me

d−→v
dt

=
−→
F

avec
d−→v
dt

= −v20
R
−→er +

dv

dt
−→eθ = −v20

R
−→er pour un mou-

vement circulaire uniforme

avec
−→
F = −e−→v Λ

−→
B = −ev0−→eθΛB0

−→ez = −ev0B0
−→er :

la force est centripète

On projette sur −→er : −
mev

2
0

RB

= −ev0B soit RB =
mev0
eB0

donc B0 =
mev0
eRB

=
p

eRB

.

On en déduit la période de l’électron T =
2πRB

v0
=

2πme

eB0

et la pulsation ωB =
2π

T
=

eB0

me

.

12. AN: B0 =
p

eRB

=
Ec

eRBc
=

2, 7.109

5, 4.3.108
=

10

2.3
=

5

3
= 1, 7 T .
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13. Au point A(0,∆y/2, 0) le champ magnétique

s’écrit
−→
B = K∆y/2−→ex avec K∆y/2 > 0. Au

point B(0,−∆y/2, 0) le champ magnétique s’écrit−→
B = −K∆y/2−→ex. On en déduit le schéma suiv-
ant en traçant les forces magnétiques sur l’électron−→
Fm = −e−→v0Λ−→B .

Les forces exercées sur A et B ramènent les électrons
vers le centre comme on le souhaite.

Oy

Ox

Fm

B
v0

Fm

B
v0

O

14. Au point C(∆x/2, 0, 0) le champ magnétique

s’écrit
−→
B = K∆x/2−→ey avec K∆x/2 > 0. Au

point D(−∆x/2, 0, 0) le champ magnétique s’écrit−→
B = −K∆x/2−→ey . On en déduit le schéma suiv-
ant en traçant les forces magnétiques sur l’électron−→
Fm = −e−→v0Λ−→B .

Les forces exercées sur C et D éloignent les électrons
du centre contrairement à ce que l’on souhaite.

Oy

Ox
O

B

B v0

v0Fm

Fm

CD

VI. Instruments de musique (arrangement de centrale PC 2010)

1. On étudie le système élémentaire compris entre x et x + dx au repos et compris entre x + u(x, t) et
x+ dx+ u(x+ dx, t) en présence d’une onde.

Sa longueur au repos est l0 = dx

Sa longueur en présence d’une onde est l = x+ dx+ u(x, t)− x− u(x, t) = dx(1 +
∂u

∂x
).

L’allongement relatif s’écrit donc
l − l0
l0

=
dx(1 + ∂u

∂x
)− dx

dx
=

∂u

∂x
.

∂u

∂x
> 0 cela signifie que le système s’est alongé.

2. Comme indiqué dans l’énoncé, la force exercée en x par le système à sa droite est
−→
F (x, t) = ES

δl

l0
−→ex =

ES
∂u

∂x
(x, t)−→ex.

3. [ρ] = kg.m−3

[E] = [
F

S
] = kg.m.s−2.m−2 = kg.m−1.s−2

On veut exprimer la vitesses des ondes soit [c] = [Eαρβ] donne m.s−1 = (kg.m−1.s−2)α(kg.m−3)β =
kgα+β.m−α−3β .s−2α.

Par identification on a:

pour les m: 1 = −α− 3β

pour les kg: 0 = α+ β

pour les s: −1 = −2α

On obtient donc α =
1

2
, β = −1

2
soit c =

√

E

ρ
: l’onde va d’autant plus vite que le milieu est rigide et peu

dense.

4. Soit le système élémentaire compris, au repos, entre x et x+ dx: il subit à droite la force
−→
Fd(x+ dx, t) =

ES
∂u

∂x
(x+ dx, t)−→ex et à gauche la force

−→
Fg(x, t) = −ES

∂u

∂x
(x, t)−→ex.

Ce système élémentaire a pour masse ρSdx et pour accélération
∂2u

∂t2
(x, t)−→ex.

Le PFD appliqué à ce système donne en projection sur Ox:
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ρSdx
∂2u

∂t2
(x, t) = ES

∂u

∂x
(x+ dx, t) − ES

∂u

∂x
(x, t) = ESdx

∂2u

∂x2
(x, t).

On obtient donc l’équation de propagation
∂2u

∂x2
− ρ

E

∂2u

∂t2
= 0: on reconnâıt une équation de d’Alembert avec

pour vitesse des ondes c =

√

E

ρ
. La relation de dispersion est de la forme k =

ω

c
.

5. La solution proposée correspond à une onde stationnaire car les variables de temps et d’espace ne sont
pas dans le même terme. Ce choix se justifie par le fait que le milieu de propagation est de taille finie.

6. On applique les conditions aux limites: u(x = 0, t) = 0 = u0 sinφ sin(ωt) qui implique que sinφ = 0 soit
φ = 0.

On a aussi u(x = L, t) = 0 = u0 sin(kL) sin(ωt) qui implique sin(kL) = 0 soit knL = nπ ou encore kn =
nπ

L
pour n ≤ n.

Par la suite les relations kn =
2π

λn

et fn =
c

λn

donnent λn =
2L

n
et fn =

nc

2L
.

mode fondamental

L=λ1/2

premier harmonique

L=2λ2/2

7. On calcule la célérité des ondes dans le bronze et dans l’acier:

cbronze =

√

1011

9.103
=

104

3
= 3300 m.s−1.

cacier =

√

1610

8.103
=

√
2.10.106 =

√
23103 = 4200 m.s−1 > cbronze.

Les fréquences émises sont proportionnelles à la célérité donc le glockenspiel en acier émet un son plus aigu
(fréquences plus élevées) que celui en bronze.

8. Les fréquences émises par la lame sont de la forme fn = n
c

2L
avec

c

2L
=

4200

2.0, 2
= 1050 Hz. Les

fréquences émises sont donc des multiples de 1050 Hz pour les ondes longitudinales étudiées. Les ondes de
500 Hz ne sont pas longitudinales.

9. On remplace la solution proposée dans l’équation de propagation avec:

∂2y

∂t2
= −ω2y(x, t)

∂2y

∂x2
= −k2y(x, t) et

∂4y

∂x4
= (−k2)2y(x, t) = k4y(x, t).

On a donc −ω2y(x, t) +
c2b2

12
k4y(x, t) soit k4 =

12ω2

c2b2
. Attention, l’équation de propagation n’est pas une

équation de d’Alembert donc la relation de dispersion n’est pas k =
ω

c
.

10. La lame est fixe à ses deux extrémités donc on a comme précédemment y(x = 0, t) = y(x = L, t) qui

imposent φ = 0 et kn =
nπ

L
.

On applique la relation de dispersion k4n =
12ω2

n

c2b2
= (

nπ

L
)4 soit k2n =

2
√
3ωn

cb
=

2π
√
32πfn
cb

= (
nπ

L
)2 qui

donne fn = n2 πcb

4
√
3L2

: fréquences de résonance liées aux ondes transversales sur les lames.
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