PC - Lycée Dumont D’Urville .
Correction T'D Gauss

I. Champ créé par un fil

vue de coté

On travaille en coordonnées cylindriques.
M  appartient Pt (M, er, e_g)
P(M, e, e)

donc ﬁ(

aux plans et

M) appartient & ces plans

— —
+ (M, er,ez)

donc ﬁ(M) est selon e;. o o Frouened
Il y a invariance par translation selon Oz donc la variable z est superflue.
Il y a invariance par rotation autour de Oz donc la variable 6 est superflue.
On a donc E(M = E(r)e;.
On choisit pour surface de Gauss un cylindre de rayon —
r = HM, de longueur [ et d’axe Oz. Seul le flux du -
champ électrique a travers la surface latérale n’est — C .
pas nul et on peut sortir E(r) de Pintégrale car sur F E
la surface latérale, le champ E(r) est uniforme. — —
¢ = 2mrlE(r) ]

T =

donc B

On applique le théoreme de Gauss: ¢ =

Qint soit ¢ = 2mrlE(r)
€0

II. Champ créé par un cylindre chargé en surface

vue de dessus

On travaille en coordonnées cylindriques.
M  appartient Pt (M, er, e_g)
PH(M, &, €)

donc ﬁ(

aux plans et

M) appartient & ces plans

27TT‘l€Q

: P+ (M,g;,gé)

ef
M

u

—_— < — —>
donc ﬁ(M) est selon e;. er B+iM,er, ez)
Il y a invariance par translation selon Oz donc la variable z est superflue.

Il y a invariance par rotation autour de Oz donc la variable 6 est superflue.
On a donc ﬁ(M) = E(r)e,.
On choisit pour surface de Gauss un cylindre de rayon —
r = HM, de hauteur h et d’axe Oz. Seul le flux du -
champ électrique a travers la surface latérale n’est — C .
pas nul et on peut sortir E(r) de lintégrale car sur F E
la surface latérale, le champ E(r) est uniforme. — —
¢ =2mrhE(r) -

ST

Qint

€0

On applique le théoreme de Gauss: ¢ =

. On distingue deux cas:



H
Cas ou 7 < R: il n’y a aucune charge dans le cylindre de Gauss, Q;,: = 0 donc ﬁ(r <R)=FE; =0.

Cas ot r > R: le cylindre de Gauss contient toutes les charges du cylindre soit Qin: = Q et ﬁ(r > R) =

—
o9 er.
2mhreg

On observe que le champ électrique n’est pas con- E(x)

tinu. Cette anomalie vient du modele utilisé. En
réalité, les charges ne sont pas sur une surface, elles Q/2ThRED
sont contenues dans des volumes. Cette discontinuité
disparait si I’on tient compte de I’épaisseur sur laque-
lle sont réparties ces charges.

[~ - =7

1. On déduit le potentiel de la relation locale E= —mv = —Cfl—‘;e_T) soit Cfl—‘: =—E(r)

Pour r < R: v —Ei(r) = 0 donc V(r < R) = A = Vy (car I’énoncé nous dit que le potentiel

Vir=0)=Vp

Pour r > R: v —E_(r) = - donc V(r > R) = — @ In(r) + C. On trouve C en écrivant la
dr 27rheg 2mheq

continuité du potentiel en 7 = R soit V(r = R™) = V(r = R") soit Vj = — 27360 In(R) + C d’ou la valeur

de C.

[TI. Champ créé par un parallélépipede

1. M appartient aux plans P (M, e;,e;) et PT(M, e, e2).
donc ﬁ(M ) appartient & ces plans
donc ﬁ(M) est selon ey.

Il y a invariance par translation selon Ox et Oy donc les variables x et y sont superflues.

On a donc ﬁ(M) = E(z)es.

e 0v.007 S
Oz oz E(z)

M
z=e/2 z=e/2

P+ (P, 0x,0y)

i Ox oy Ox oy
z=-e/2 z=—-e/2
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—
FanY
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De plus le plan P(O, Ox,Oy) est un plan PT donc en deux points symétriques par rapport a ce plan, tels
que les points M (z) et M'(—z), les potentiels sont égaux et les champs électriques sont symétriques. D’apres

le schéma on a E(—z) = — E(2).
2. Le flux du champ électrique est nul sur la surface R L
latérale du cylindre. Les flux du champ électrique sur n o= deg| B
les surfaces en z et en —z sont identiques, on a donc /;
¢ = 2B(2)S. —Nl A
n = er n = er

T
A iTRA

E(-z)=-E(2)




3. Attention, la variable z est positive.

. Lo Qint _
On applique le théoreme de Gauss: ¢ = —. On distingue deux cas: 0 < z < e/2 et z > e/2.
€0
cylindre de oz cylindre de oz
Gauss Gauss
\ . Gige 7 -7,

s z chargé
— > >
4

z=-e/2 /1d_e\ z=-e/2
~_ _
pour z<e/2 pour z>e/2
Pour 0 < z < e/2: Pour z > e/2:
Qint = poS2z soit d’apres le théoreme de Gauss: Qi = poSe soit d’apres le théoreme de Gauss:
S2 S
¢ =2B(2)S = 22222 qone E = 2% ¢ =2E(2)S = 222° qone E = 22
€0 €0 €0 2¢€9
Pour trouver les expressions du champ pour z < 0, on utilise ﬁ(—z) = —B(z)

Soit pour —e/2 < z < 0: ﬁ(z) _ _PO(—Z)e—;

€0
Soit pour z < —e/2: ﬁ(z) = —@e_z)
260
— av av
4. On utilise la relation E = —gradV = ———¢e; soit — = —E(z).
dz dz
dav PoOZ po2> .
Pour —e/2 < z < e/2: Fr —FE(z) = —— donc V(z) = . + A. On trouve A avec la condition
4 €0 €0
donnée dans ’énoncé, V(z =0) =0 = A.
av
Pour z > e/2: i —E(2) = —g donc V(z) = PO | B. On trouve B en écrivant la continuité du
z €0 €0
2 2
potentiel en z = e/2. Soit V(z = ¢/2) = R i
860 460
dv poe pPoeZ P o
Pour z < —e/2: i —E(z) = —1—2— donc V(z) = + 5 + C. On trouve C' en écrivant la continuité du
z €0 €0
2 2
potentiel en z = —e/2. Soit V(z = —e/2) = L L LYo
860 460

IV. Equation de Poisson

9B~

—
Maxwell Faraday: rﬁﬁ =— 0 (en électrostatique) donc il existe un potentiel V' tel que B = —gradV.

ot
H J—
Maxwell Gauss: divE = ~ qui donne —div(gradV) = —AV = 2 soit I’équation de Poisson: AV = —r
€0 €0 €0
Il y a invariance par rotation autour du point O donc le potentiel ne dépend ni de 6, ni de ¢ soit V =V (r)
1d%(rV)
t AV = — .
¢ r dr?

1d?(rV) p d*(rV) _pr

A Tintérieur de la sphere on doit résoudre AV = — = —— soit =
r o dr? €0 dr? €0
pr® pr? B
On primitive deux fois par rapport a r: rV(r) = % + Ar 4+ B soit V(r) = . +A+—.
€0 €0 r
Le terme B/r diverge quand r tend vers 0 donc on doit prendre B = 0.
2
D’apres I’énoncé V(r =0) =V = A donc V(r) = —gi + V.
€0
1d%(rv d*(rv
A Textérieur de la sphere on doit résoudre AV = — (rV) = 0 soit L) =0.
r dr? dr?

D
On primitive deux fois par rapport a r: rV(r) = Cr + D soit V(r) = C+ —. On a C = 0 car le potentiel
r

est nul loin de la sphere.



On trouve la constant D en écrivant la continuité du potentiel en 7 = R: V(r = R™) = V(r = R™") soit

D
——— + Vp = —, on en déduit D.

V. Symétrie sphérique

1. On repere M par ses coordonnées sphériques. M
M i Pt (M, e}, e) et

appartient aux plans

P*(M, e}, e}) donc B(M) appartient ces plans donc
B(M) est selon e;.
Il y a invariance par rotation autour de tout axe pas-

sant par O donc le champ électrique ne dépend que
de r.

On a donc B(M) = E(r)e;. P+ (M, er, of)
p(M)

L’équation de Maxwell Gauss s’écrit avE = £ (en toute rigueur on devrait plutdt écrire divﬁ(M) = ).
€0 €0

r’E
Le champ électrique s’écrit ﬁ(M) = E(r)e; donc E, = E(r), Eg = E4 = 0 soit divE = - % =L
r r €0

A Tintérieur de la sphere, pour r < b, la charge est uniformément répartie donc la densité volumique de
3Q

Inb® Amh3”°
3

2
On doit donc résoudre divﬁ = iw =L

r2 dr €0
d(r?E(r)) B pr?
dr o €0

charge est uniforme et s’écrit p =

Soit

En primitivant: r2E(r) = pT + A

360
. pr A
dow: E(r) =FE =—+ =
oit: B(r) = Eo(r) = 2=+ 5
Le terme % diverge quand r tend vers zéro donc on doit prendre A =0 donc E(r) = E4(r) = 3p_7°
€0

A Textérieur de la sphere, pour r > b, il n’y a pas de charge donc p = 0.
1 d(r’E

On doit donc résoudre divﬁ = —2w =0
r

dr
d(r*E(r))

Soit
oi o

=0

B
En primitivant: 72 E(r) = B et E(r) = —.
r

On trouve la constante B en écrivant la continuité du champ électrique en r = b soit E4(r =b) = E_(r =b)

. pb B | pb3 pb3
t 22 = = soit B=L5" et B_(r) = 2.
SOt 3eg b2 SOt 3eo ¢ (r) = 3eqr?

2. Application : la distribution de charges est équivalente & une grande sphére de centre O; chargée
positivement avec une densité volumique de charges +p (distribution D7) et une petite sphére de centre O
chargée négativement avec une densité volumique de charges —p (distribution D).

— s
Pour la suite on utilise I'expression du champ E (M) = £= LUl avec re; = OM done E+ (M)=£0M.

Le champ électrique en un point M de la cavité de la distribution D est égale a la somme du champ électrique
— —p—
créé en M par Dy soit Fi(r) = 3£01M et du champ électrique créé en M par Ds soit Fa(r) = 3—p02M.
€ €

On a donc E(M) = %OlM — %OQM = 3_23(01]\/[ — O M) = 3_230102: le champ dans la cavité est

T
uniforme, il ne dépend pas de M, il est dirigé selon O105.

VI. Polarisabilité électronique d’un atome



1. Soit la sphere de centre N, de rayon a portant la charge —Ze uniformément répartie. A l'intérieur de

—Ze —3Ze

la sphere la densité volumique de charges est uniforme et s’écrit p = — = e et a l'extérieur de la
dma” el
3

sphere, la densité volumique de charges est nulle.

On repere M par ses coordonnées sphériques. M
. __, er
M Pt (M, e}, e) et

appartient aux plans

P*(M, &}, e}) donc ﬁ(M) appartient ces plans donc
(M) est selon ;.
Il y a invariance par rotation autour de tout axe pas-

sant par O donc le champ électrique ne dépend que
de r.

On a donc E (M) = E(r)z;. B (1o, 5P
2
On choisit pour surface de Gauss une sphére Theer /.
de centre N et de rayon r = = E
#ﬁ M)dS(M ﬁE JerdSe; =
# dS = E(r)4mr.
On applique le théoreme de Gauss: & = F (r)47rr2 = th. Dans le cas ou r < a, la charge intérieure est la
€0
4 3 -z 3
charge contenue dans la sphere de rayon r soit Q;nt = p 7? = :T
a
2 ﬁ —Zer _
On a donc ® = E(r)dnre = smt = ——e,
a360 4dmega’

_)
2. Le nuage électronique se déplace dans le sens opposé a Fyp, le noyau est tres lourd par rapport aux
électrons c’est pour cela qu’on néglige son déplacement.

= —
Le noyau subit la force électrique F, = Ze(Ep + E)
et son poids que l'on néglige par rapport a la force

électrique. Le champ électrique F est le champ créé

en P par le nuage électronique soit = (P) =
—Z
o e_Z avec reT = ‘ﬁ soit E N_—ﬁ

47‘1’60@3 0&3

j ou encore N j =

A Déquilibre du noyau on a I*TZ = Ze(E_’O> + E(P)) =0 soit ES = —ﬁ(

47T€06L3
4mega® E>
0-

Ze

H
Le moment dipolaire du dipole induit est ? = Zeﬁ = 4mepa®Ey. Par identification la polarisabilité
électronique s’écrit o = 4mwa®: elle est d’autant plus grande que 'atome est gros. Effectivement quand
I’atome est de grande taille, le nuage électronique se déforme plus facilement.
3

4 4
3. Ona N ﬁ meoa’ ES donc en norme NP = o .
Ze ZeFEy,

478,8.10712(10710)3
1,6.10- 19107

Hélium: Z = 1 et I'ordre de grandeur de la taille de 'atome est a =~ 10710 m soit NP =

1072 m



