
PC - Lycée Dumont D’Urville

Correction TD Gauss
I. Champ créé par un fil

On travaille en coordonnées cylindriques.

M appartient aux plans P+(M,−→er ,
−→eθ) et

P+(M,−→er ,
−→ez)

donc
−→
E (M) appartient à ces plans

donc
−→
E (M) est selon −→er .

vue de coté

er

ez

eθ

P+(M,er,ez)

P+(M,er,eθ)

Il y a invariance par translation selon Oz donc la variable z est superflue.

Il y a invariance par rotation autour de Oz donc la variable θ est superflue.

On a donc
−→
E (M) = E(r)−→er .

On choisit pour surface de Gauss un cylindre de rayon
r = HM , de longueur l et d’axe Oz. Seul le flux du
champ électrique à travers la surface latérale n’est
pas nul et on peut sortir E(r) de l’intégrale car sur
la surface latérale, le champ E(r) est uniforme.

φ = 2πrlE(r)

n=ez

n=ern=er

E

E

E

n=-ez
E

On applique le théorème de Gauss: φ =
Qint

ǫ0
soit φ = 2πrlE(r) =

Q

ǫ0
donc

−→
E =

Q

2πrlǫ0

−→er .

II. Champ créé par un cylindre chargé en surface

On travaille en coordonnées cylindriques.

M appartient aux plans P+(M,−→er ,
−→eθ) et

P+(M,−→er ,
−→ez)

donc
−→
E (M) appartient à ces plans

donc
−→
E (M) est selon −→er .

vue de dessus

er
P+(M,er,ez)

P+(M,er,eθ)

eθ

ez

+ +

+

+++

+

+
M

Il y a invariance par translation selon Oz donc la variable z est superflue.

Il y a invariance par rotation autour de Oz donc la variable θ est superflue.

On a donc
−→
E (M) = E(r)−→er .

On choisit pour surface de Gauss un cylindre de rayon
r = HM , de hauteur h et d’axe Oz. Seul le flux du
champ électrique à travers la surface latérale n’est
pas nul et on peut sortir E(r) de l’intégrale car sur
la surface latérale, le champ E(r) est uniforme.

φ = 2πrhE(r)

n=ez

n=ern=er

E

E

E

n=-ez
E

On applique le théorème de Gauss: φ =
Qint

ǫ0
. On distingue deux cas:
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Cas où r < R: il n’y a aucune charge dans le cylindre de Gauss, Qint = 0 donc
−→
E (r < R) =

−→
E+ = 0.

Cas où r > R: le cylindre de Gauss contient toutes les charges du cylindre soit Qint = Q et
−→
E (r > R) =

−→
E− =

Q

2πhrǫ0

−→er .

On observe que le champ électrique n’est pas con-
tinu. Cette anomalie vient du modèle utilisé. En
réalité, les charges ne sont pas sur une surface, elles
sont contenues dans des volumes. Cette discontinuité
disparâıt si l’on tient compte de l’épaisseur sur laque-
lle sont réparties ces charges.

E(r)

r
R

0

Q/2πhRε0

1. On déduit le potentiel de la relation locale
−→
E = −

−−→
gradV = −

dV

dr
−→er soit

dV

dr
= −E(r)

Pour r < R:
dV

dr
= −E+(r) = 0 donc V (r < R) = A = V0 (car l’énoncé nous dit que le potentiel

V (r = 0) = V0.

Pour r > R:
dV

dr
= −E−(r) = −

Q

2πrhǫ0
donc V (r > R) = −

Q

2πhǫ0
ln(r) + C. On trouve C en écrivant la

continuité du potentiel en r = R soit V (r = R−) = V (r = R+) soit V0 = −
Q

2πhǫ0
ln(R) + C d’où la valeur

de C.

III. Champ créé par un parallélépipède

1. M appartient aux plans P+(M,−→ex,
−→ez) et P

+(M,−→ey ,
−→ez).

donc
−→
E (M) appartient à ces plans

donc
−→
E (M) est selon −→ez .

Il y a invariance par translation selon Ox et Oy donc les variables x et y sont superflues.

On a donc
−→
E (M) = E(z)−→ez .

Oy
Ox

e

z=e/2

z=-e/2

Oz

b

M

P+(M,Ox,Oz)
P+(M,Oy,Oz)

Oy
Ox

z=e/2

z=-e/2

Oz

P+(O,Ox,Oy)

z

-z

E(z)

E(-z)

De plus le plan P (O,Ox,Oy) est un plan P+ donc en deux points symétriques par rapport à ce plan, tels
que les points M(z) et M ′(−z), les potentiels sont égaux et les champs électriques sont symétriques. D’après

le schéma on a
−→
E (−z) = −

−→
E (z).

2. Le flux du champ électrique est nul sur la surface
latérale du cylindre. Les flux du champ électrique sur
les surfaces en z et en −z sont identiques, on a donc
φ = 2E(z)S.

Oz

Ox

Oy

+z

-z

n = ern = er

EE

E(z)
n = ez

E(-z)=-E(z)n =-ez
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3. Attention, la variable z est positive.

On applique le théorème de Gauss: φ =
Qint

ǫ0
. On distingue deux cas: 0 < z < e/2 et z > e/2.

Oz

Oy

z=e/2

z=-e/2

cylindre de
Gauss

z

-z

pour z<e/2

Oz

Oy

z=e/2

z=-e/2

cylindre de
Gauss

pour z>e/2

z

-z

vide

vide

chargé

Pour 0 < z < e/2:

Qint = ρ0S2z soit d’après le théorème de Gauss:

φ = 2E(z)S =
ρ0S2z

ǫ0
donc

−→
E =

ρ0z

ǫ0

−→ez

Pour z > e/2:

Qint = ρ0Se soit d’après le théorème de Gauss:

φ = 2E(z)S =
ρ0Se

ǫ0
donc

−→
E =

ρ0e

2ǫ0

−→ez

Pour trouver les expressions du champ pour z < 0, on utilise
−→
E (−z) = −

−→
E (z).

Soit pour −e/2 < z < 0:
−→
E (z) = −

ρ0(−z)

ǫ0

−→ez

Soit pour z < −e/2:
−→
E (z) = −

ρ0e

2ǫ0

−→ez

4. On utilise la relation
−→
E = −

−−→
gradV = −

dV

dz
−→ez soit

dV

dz
= −E(z).

Pour −e/2 < z < e/2:
dV

dz
= −E(z) = −

ρ0z

ǫ0
donc V (z) = −

ρ0z
2

2ǫ0
+ A. On trouve A avec la condition

donnée dans l’énoncé, V (z = 0) = 0 = A.

Pour z > e/2:
dV

dz
= −E(z) = −

ρ0e

2ǫ0
donc V (z) = −

ρ0ez

2ǫ0
+ B. On trouve B en écrivant la continuité du

potentiel en z = e/2. Soit V (z = e/2) = −
ρ0e

2

8ǫ0
= −

ρ0e
2

4ǫ0
+B.

Pour z < −e/2:
dV

dz
= −E(z) = +

ρ0e

2ǫ0
donc V (z) = +

ρ0ez

2ǫ0
+ C. On trouve C en écrivant la continuité du

potentiel en z = −e/2. Soit V (z = −e/2) = −
ρ0e

2

8ǫ0
= +

ρ0e
2

4ǫ0
+ C.

IV. Equation de Poisson

Maxwell Faraday:
−→
rot

−→
E = −

∂
−→
B

∂t
=

−→
0 (en électrostatique) donc il existe un potentiel V tel que

−→
E = −

−−→
gradV .

Maxwell Gauss: div
−→
E =

ρ

ǫ0
qui donne −div(

−−→
gradV) = −∆V =

ρ

ǫ0
soit l’équation de Poisson: ∆V =

−ρ

ǫ0
.

Il y a invariance par rotation autour du point O donc le potentiel ne dépend ni de θ, ni de φ soit V = V (r)

et ∆V =
1

r

d2(rV )

dr2
.

A l’intérieur de la sphère on doit résoudre ∆V =
1

r

d2(rV )

dr2
= −

ρ

ǫ0
soit

d2(rV )

dr2
= −

ρr

ǫ0
.

On primitive deux fois par rapport à r: rV (r) = −
ρr3

6ǫ0
+Ar +B soit V (r) = −

ρr2

6ǫ0
+A+

B

r
.

Le terme B/r diverge quand r tend vers 0 donc on doit prendre B = 0.

D’après l’énoncé V (r = 0) = V0 = A donc V (r) = −
ρr2

6ǫ0
+ V0.

A l’extérieur de la sphère on doit résoudre ∆V =
1

r

d2(rV )

dr2
= 0 soit

d2(rV )

dr2
= 0.

On primitive deux fois par rapport à r: rV (r) = Cr +D soit V (r) = C +
D

r
. On a C = 0 car le potentiel

est nul loin de la sphère.

3



On trouve la constant D en écrivant la continuité du potentiel en r = R: V (r = R−) = V (r = R+) soit

−
ρR2

6ǫ0
+ V0 =

D

R
, on en déduit D.

V. Symétrie sphérique

1. On repère M par ses coordonnées sphériques.

M appartient aux plans P+(M,−→er ,
−→eθ) et

P+(M,−→er ,
−→eφ) donc

−→
E (M) appartient ces plans donc

−→
E (M) est selon −→er .

Il y a invariance par rotation autour de tout axe pas-
sant par O donc le champ électrique ne dépend que
de r.

On a donc
−→
E (M) = E(r)−→er .

+ +

+ - +

+ +

er

eθ

eφ

P+(M,er,eθ)

N

P+(M,er,eφ)

M

r

L’équation de Maxwell Gauss s’écrit div
−→
E =

ρ

ǫ0
(en toute rigueur on devrait plutôt écrire div

−→
E (M) =

ρ(M)

ǫ0
).

Le champ électrique s’écrit
−→
E (M) = E(r)−→er donc Er = E(r), Eθ = Eφ = 0 soit div

−→
E =

1

r2
d(r2E(r))

dr
=

ρ

ǫ0
.

A l’intérieur de la sphère, pour r < b, la charge est uniformément répartie donc la densité volumique de

charge est uniforme et s’écrit ρ =
Q

4πb3

3

=
3Q

4πb3
.

On doit donc résoudre div
−→
E =

1

r2
d(r2E(r))

dr
=

ρ

ǫ0

Soit
d(r2E(r))

dr
=

ρr2

ǫ0

En primitivant: r2E(r) =
ρr3

3ǫ0
+A

d’où: E(r) = E+(r) =
ρr

3ǫ0
+

A

r2

Le terme A
r2

diverge quand r tend vers zéro donc on doit prendre A = 0 donc E(r) = E+(r) =
ρr

3ǫ0
.

A l’extérieur de la sphère, pour r > b, il n’y a pas de charge donc ρ = 0.

On doit donc résoudre div
−→
E =

1

r2
d(r2E(r))

dr
= 0

Soit
d(r2E(r))

dr
= 0

En primitivant: r2E(r) = B et E(r) =
B

r2
.

On trouve la constante B en écrivant la continuité du champ électrique en r = b soit E+(r = b) = E−(r = b)

soit
ρb

3ǫ0
=

B

b2
soit B =

ρb3

3ǫ0
et E−(r) =

ρb3

3ǫ0r2
.

2. Application : la distribution de charges est équivalente à une grande sphère de centre O1 chargée
positivement avec une densité volumique de charges +ρ (distribution D1) et une petite sphère de centre O2

chargée négativement avec une densité volumique de charges −ρ (distribution D2).

Pour la suite on utilise l’expression du champ
−→
E+(M) = ρr

3ǫ0

−→er avec r−→er =
−−→
OM donc

−→
E+(M) = ρ

3ǫ

−−→
OM .

Le champ électrique en un point M de la cavité de la distribution D est égale à la somme du champ électrique

créé en M par D1 soit E1(r) =
ρ

3ǫ

−−−→
O1M et du champ électrique créé en M par D2 soit E2(r) =

−ρ

3ǫ

−−−→
O2M .

On a donc
−→
E (M) =

ρ

3ǫ

−−−→
O1M −

ρ

3ǫ

−−−→
O2M =

ρ

3ǫ0
(
−−−→
O1M −

−−−→
O2M) =

ρ

3ǫ0

−−−→
O1O2: le champ dans la cavité est

uniforme, il ne dépend pas de M , il est dirigé selon
−−−→
O1O2.

VI. Polarisabilité électronique d’un atome

4



1. Soit la sphère de centre N , de rayon a portant la charge −Ze uniformément répartie. A l’intérieur de

la sphère la densité volumique de charges est uniforme et s’écrit ρ =
−Ze
4πa3

3

=
−3Ze

4πa3
et à l’extérieur de la

sphère, la densité volumique de charges est nulle.

On repère M par ses coordonnées sphériques.

M appartient aux plans P+(M,−→er ,
−→eθ) et

P+(M,−→er ,
−→eφ) donc

−→
E (M) appartient ces plans donc

−→
E (M) est selon −→er .

Il y a invariance par rotation autour de tout axe pas-
sant par O donc le champ électrique ne dépend que
de r.

On a donc
−→
E (M) = E(r)−→er .

- -

- - -

- -

er

eθ

eφ

P+(M,er,eθ)

N

P+(M,er,eφ)

M

r

2

On choisit pour surface de Gauss une sphère
de centre N et de rayon r = OM : Φ =∫∫
©

−→
E (M)dS(M)−→n (M) =

∫∫
©E(r)−→erdS

−→er =

E(r)

∫∫
© dS = E(r)4πr2. N

r

M

n=er

E

On applique le théorème de Gauss: Φ = E(r)4πr2 =
Qint

ǫ0
. Dans le cas où r < a, la charge intérieure est la

charge contenue dans la sphère de rayon r soit Qint = ρ
4πr3

3
=

−Zer3

a3
.

On a donc Φ = E(r)4πr2 =
−Zer3

a3ǫ0
soit

−→
E (M) =

−Zer

4πǫ0a3
−→er .

2. Le nuage électronique se déplace dans le sens opposé à
−→
E0, le noyau est très lourd par rapport aux

électrons c’est pour cela qu’on néglige son déplacement.

Le noyau subit la force électrique
−→
Fe = Ze(

−→
E0 +

−→
E )

et son poids que l’on néglige par rapport à la force

électrique. Le champ électrique
−→
E est le champ créé

en P par le nuage électronique soit
−→
E =

−→
E (P ) =

−Zer

4πǫ0a3
−→er avec r−→er =

−−→
NP soit

−→
E (P ) =

−Ze

4πǫ0a3
−−→
NP .

- - -

- - -

- - -

- - -

-

-

N

E0

-

P

p

A l’équilibre du noyau on a
−→
Fe = Ze(

−→
E0 +

−→
E (P )) =

−→
0 soit

−→
E0 = −

−→
E (P ) =

Ze

4πǫ0a3
−−→
NP ou encore

−−→
NP =

4πǫ0a
3

Ze

−→
E0.

Le moment dipolaire du dipole induit est −→p = Ze
−−→
NP = 4πǫ0a

3−→E0. Par identification la polarisabilité
électronique s’écrit α = 4πa3: elle est d’autant plus grande que l’atome est gros. Effectivement quand
l’atome est de grande taille, le nuage électronique se déforme plus facilement.

3. On a
−−→
NP =

4πǫ0a
3

Ze

−→
E0 donc en norme NP =

4πǫ0a
3

ZeE0

.

Hélium: Z = 1 et l’ordre de grandeur de la taille de l’atome est a ≈ 10−10 m soitNP =
4π8, 8.10−12(10−10)3

1, 6.10−19104
≈

10−25 m.
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