
TD dipôle magnétique
I. Estimation de la taille du noyau terrestre

1. Dans le modèle de Bohr, l’électron de l’atome d’hydrogène décrit une orbite circulaire autour du noyau.
On note R, le rayon de l’orbite, V la vitesse de l’électron, −e la charge et m la masse de l’électron. Données:
µ0 = 4π.10−7 H.m−1, e = 1, 6.10−19 C, m = 9, 0.10−31 kg, h̄ = 1, 0.10−34 J.s.

1.a. Représenter la trajectoire de l’électron et exprimer en fonction des données son moment
cinétique

−→
LO par rapport au noyau placé en O à l’origine du repère.

1.b. Exprimer le moment magnétique orbital
−→
M de la boucle de courant créée par le mouvement

de l’électron

1.c. Dans le modèle de Bohr, le moment cinétique de l’électron est quantifié: LO = nh̄. En déduit
que le moment magnétique associé à l’électron est quantifié. On appelle magnéton de Bohr noté µB, le
moment magnétique pour n = 1, exprimer et calculer µB (on donne h̄ = 10−34 J.s).

2. Le magnétisme terrestre est assimilé à celui d’un aimant géant situé au centre de la Terre de moment
magnétique M = 8, 0.1022 A.m2. En déduire le nombre N d’atomes de la matière aimantée constituant le
noyau terrestre sachant que chaque atome concerné porte un moment magnétique de l’ordre du magnéton de

Bohr µB =
eh̄

2m
. Données: e = 1, 6.10−19 C, m = 9, 1.10−31 kg, h̄ = 1, 05.10−34 J.s, Na = 6, 0.1023 mol−1.

3. En prenant des valeurs moyennes pour la masse molaire et pour la masse volumique (mélange de fer et
de nickel) soit M = 57 g.mol−1 et ρ = 8, 0.103 kg.m−3, estimer le volume de matière concerné et en déduire
le rayon R du noyau terrestre interne supposé sphérique. Le rayon du noyau interne est en fait de 1200 km.
Commenter.

Réponse: R = 290 km

II. Méthode des oscillations

On considère une boussole de moment magnétique
−→
M libre de tourner sans frottements autour de l’axe
vertical Oz. La composante horizontale du champ
magnétique terrestre s’écrit

−→
BT = BT

−→ex, on cherche
à la mesurer. Le moment d’inertie de la boussole par
rapport à Oz est noté J . On note θ l’angle entre

−→
BT

et
−→
M .
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1. On donne l’expression de l’énergie potentielle d’interaction entre le moment magnétique
−→
M et le champ

magnétique
−→
BT : Ep = −

−→
M.

−→
BT . Tracer la courbe énergie potentielle en fonction de θ et en déduire les

positions d’équilibre stable et instable.

2. On donne l’expression du couple exercé par le champ magnétique
−→
BT sur le moment magnétique

−→
M :

−→
Γ =

−→
MΛ

−→
BT . À l’aide du théorème de mécanique adapté, déterminer l’équation différentielle vérifiée par θ.

En déduire la période T0 des petites oscillations de la boussole. En déduire quelles données sont nécessaires
si on veut déduire BT d’une mesure de cette période T0.

3. On modifie maintenant l’expérience en ajoutant un champ magnétique
−→
B0 supplémentaire de norme B0

connue inférieure à BT et qu’on peut orienter selon −→ex ou −−→ex. On mesure une période T pour de petites
oscillations quand

−→
B0 = +B0

−→ex et une période T ′ quand
−→
B0 = −B0

−→ex.

3.a. Expérimentalement, comment produire un champ magnétique
−→
B0 approximativement ho-

mogène dont on peut contrôler facilement le sens ?

3.b. Exprimer alors BT en fonction uniquement de B0, T et T ′. Pourquoi cette variante de
l’expérience est-elle plus pratique pour mesurer BT ?

Réponses: 2- T = 2π

√

J

MBT
3- BT = B0

T ′2 − T 2

T ′2 + T 2
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III. Champ magnétique terrestre

On étudie un modèle de champ géomagnétique créé par un dipôle magnétique
−→
M = −M′

−→ez disposé au centre
O de la Terre (assimilée à une sphère de rayon RT ), l’axe (Oz) étant l’axe polaire géographique dirigé du pôle
sud de cet axe vers son pôle nord. On rappelle qu’un point de la surface est caractérisé par ses coordonnées

géographiques φ (longitude) et λ =
π

2
− θ (latitude). Données: M′ = 7, 9.1022 A.m2, µ0 = 4π.10−7 H.m−1

et RT = 6, 4.103 km.

Le champmagnétique créé en un pointM par un dipôle
−→
M placé enO est:

−→
B =

µ0

4π

3
−−→
OM(

−→
M.

−−→
OM )−OM2−→M

OM5

1. Exprimer le champ magnétique en coordonnées sphériques, en fonction de µ0, M0, r, θ, −→er et −→eθ .

2. Déterminer l’équation de ligne de champ magnétique passant par θ = π/2 et r = r0. On donne:

d
−−→
OM = dr−→er + rdθ−→eθ + r sin θdφ−→eφ.

3. Calculer le champ magnétique au pôle nord, à l’équateur et à Toulon de latitude λ = 430 nord.

Réponses: 2- ligne de champ ρ = ρ0 sin
2 θ 3- Au pôle nord B = 61 µT

IV. Expérience de Stern et Gerlach

Dans une enceinte où règne une faible pression
est placé un four contenant du lithium porté à la
température T . Un ensemble d’ouvertures pratiquées
dans le four permet d’obtenir un jet homocinétique

d’atomes de lithium d’énergie cinétique Ec =
mv2

0

2
et

de vitesse −→v = v0−→ex. La pesanteur est négligée.
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1. Calculer la température T pour Ec = 1, 6.10−20 J . Donnée: kB = 1, 3.10−23 J.K−1.

2. Les atomes de lithium traversent une zone comprise entre les plans x = 0 et x = l, où règne un champ
magnétique

−→
B = kz−→ez (k est une constante positive). En dehors de cette zone le champ magnétique est nul.

On constate que le jet est dévié en deux et que les deux points d’impact sur la plaque sont symétriques,
situés en z = +z0 et z = −z0.

2.a. La déviation peut-elle s’expliquer par la force de Lorentz subie par les atomes ? La déviation
s’explique en attribuant un moment magnétique

−→
M = Mx

−→ex + My
−→ey + Mz

−→ez aux atomes de lithium.

On rappelle
−→
F = (

−→
M.

−−→
grad)

−→
B . Exprimer la force exercée sur un atome dans la zone où règne le champ

magnétique. Montrer que l’équation de la trajectoire d’un atome dans la zone où règne le champ magnétique

s’écrit z =
Mzkx

2

4Ec
.

2.b. Quelle est la nature de la trajectoire lorsque l’atome est dans la zone où il n’y a pas de champ

magnétique? Montrer que z0 =
Mzkl

4Ec
(l + 2D).

2.c. Les atomes de lithium n’ont pas de moment cinétique orbital, mais uniquement un moment
cinétique de spin Mz = ±µB

2
. Calculer z0 pour l = 10 cm, D = 1 m, k = 10 T.m−1 et µB = 9, 3.10−24 A.m2.

Réponses: 1- T = 820 K 2a-
−→
F = Mzk−→ez 2d- z0 = 0, 30 mm.
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V. Aimant placé au centre d’une bobine

1. On donne le champ magnétique créé par une spire
(de rayon R, de centre O et parcouru par un courant
I) en un point M de son axe de symétrie noté Ox.

B(x) =
µ0I

2R

1

(1 + x2

R2 )3/2

Ox

M

x

O

x=0

Utiliser les symétries pour trouver la direction du champ magnétique en M .

Déduire de l’expression de B(x), la relation entre
−→
B (x) et

−→
B (−x). Vérifier la cohérence du résultat par les

propriétés de symétrie.

En quel point de l’axe, le champ magnétique est-il maximal? quelle est alors sa valeur?

2. Soit un dipôle de moment magnétique
−→
M placé dans un champ magnétique

−→
B . Rappeler la position

d’équilibre stable de ce dipôle. Donnée: l’énergie potentielle d’un dipôle
−→
M placé dans un champ magnétique

−→
B s’écrit Ep = −

−→
M.

−→
B .

3. On se propose de mesurer la norme de la composante horizontale notée
−→
Bh du champmagnétique terrestre

en un lieu. Pour cela on dispose d’une petite aiguille aimantée montée sur pivot, donc mobile autour d’un
axe vertical sans frottements. Ce petit aimant de moment magnétique

−→
M est placé au centre O d’une

bobine plate comportant N spires circulaires de rayon R chacune (on néglige la section des fils) contenue
dans un plan vertical et alimentée par un courant continu d’intensité I réglable.

Dans la suite on note
−→
Bb, le champmagnétique créé par la bobine en son centre,

−→
Bh, la composante horizontale

du champ magnétique terrestre et
−→
Bt, le champ magnétique résultant au centre de la bobine.

On observe que l’aiguille tourne d’un angle α lorsque l’intensité dans la bobine passe d’une valeur nulle à I.

Ajouter sur les schémas l’orientation du dipôle magnétique
−→
M de l’aimant en absence et en présence de

courant dans la bobine.

Bh

Ox

en absence de courant 
dans la bobine

O

Bh

Ox

en présence de courant 
dans la bobine

O

I

Exprimer Bh en fonction de α, µ0, N , I et R.

AN: calculer Bh à Paris sachant que N = 5, α = 200, R = 12 cm, I = 0, 38 A et µ0 = 4π.10−7 H.m−1.

Réponses: 1-
−→
B (−x) =

−→
B (x) 2- Bh =

µ0NI

2R tanα
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