PC - Lycée Dumont D’Urville

TD équations de Maxwell

I. Equation de Maxwell-Gauss o

p3p0
Des charges sont réparties uniformément entre les P=0 p=0
plans d’équation x = —e et © = +e. Soit la den-
sité volumique de charges s’écrit: p(x < —e) = p(z > =8 @ -
e) =0et p(—e <z < e) = pp. On néglige les effets
de bord.

1. Simplifier 'expression du champ électrique a 'aide des symétries et des invariances. Que dire du champ
électrique en O7

2. Déduire de I'équation de Maxwell-Gauss I’expression du champ électrique en tout point M. On admet
que le champ électrique est continu.
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II. Equation de Maxwell-Ampeére <

|
Soit un céable cylindrique de rayon R et d’axe Oz par- ~—
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couru par un vecteur densité de courant j = %e—;.
1. Exprimer l'intensité I du courant qui traverse ce
cable.

=

2. Simplifier 'expression du champ magnétique a N~ |
I’aide des symétries et des invariances.

3. Déduire de ’équation de Maxwell-Ampere en régime stationnaire, ’expression du champ magnétique en
10A, 0A A, 0A. 1 0(rA Ay
tout point. On donne : ol A = (;869 - %)e_r) + (862 - %—T)e_g + ;(% - 889 )er
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Réponses: 1- I =

[TI. Courants de conduction et de déplacement

On étudie un milieu de conductivité v pour lequel la densité volumique de courant de conduction vérifie

— .
la loi d’ohm locale. Ce milieu est le siége d'un champ électrique de la forme E = Ege/ @) en notation
complexe.

1. Qu’appelle-t-on courant de déplacement ? Exprimer, en ordre de grandeur, o défini comme le rapport
des amplitudes du courant de conduction sur le courant de déplacement.

2. Calculer o pour des fréquences de 10 Hz & 10'° Hz pour le cuivre et le verre. En déduire une simplifi-
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cation de I’équation de Maxwell-Ampere. Données: ey = 6.107 ST, Vyerre = 1076 ST et
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IV. Flux du vecteur de Poynting @

On considere un cable électrique assimilé & un cylin-

dre d’axe Oz, de longueur L, de rayon a, conducteur .

ohmique de conductivité v, parcouru par des courants

indépendants du temps de densité volumique uni-
- — 1 e1ea s .

forme j = je;. Sa perméabilité est celle du vide

1o- On néglige les effets de bord. C)

1. Déduire des symétries, les directions des champs électrique et magnétique. Préciser la forme des lignes
de champ électrique et magnétique. Etudier les invariances.

2. Exprimer U'intensité I du courant dans le cable et la résistance R. du cable.

3. Déduire de la loi d’Ohm, I'expression du champ ﬁ Déduire du théoreme d’Ampere le champ magnétique
créé en tout point a 'extérieur du cable.

4. En déduire les expressions du vecteur de Poynting en un point M & la surface du cable et de la puissance
électromagnétique rayonnée par le champ électromagnétique a travers le cable en fonction de la résistance
R. du cable et de I. Commenter.
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Réponses : 3- B = —28—; 4- ﬁ = — ¢ et P=—R.]?
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V. Poéle a induction

On se contente de comprendre le principe du
chauffage par induction avec un circuit simple com-
posé d’une unique spire circulaire de centre O et
de rayon R, parcourue par une intensité i(t) =
Iy cos(wt). On travaille dans un systéme de coor-
données cylindriques (r, 6, z) dans la base (e, ez, €2).
On pose, dans le plan de cette spire, une poéle as-
similée a un cylindre de rayon a < R et d’épaisseur
e, de perméabilité magnétique relative u, et de con-
ductivité électrique 7.

Dans un souci de simplification, on suppose que le champ magnétique g(M ,t) créé par la spire dans la poéle
) (t
est uniforme. On donne : B(M,t) = %};().

1. Déterminer la direction de ﬁ(M ,t) et de ﬁ(M ,t) et préciser la forme des lignes de champ électrique et
de champ magnétique.

2. Rappeler I'équation locale de Maxwell-Faraday, en déduire I’expression du champ électrique. On admet
que FE ne dépend que de r et de t.
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On donne : Tl A = ( -
r
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3. Ce champ électrique induit est responsable de courants de Foucault répartis dans tout le volume du

conducteur. Exprimer la densité de courant volumique j (M,t) en tout point de la poéle et la puissance
volumique moyenne p dissipée par effet Joule en fonction des données.

4. En intégrant cette puissance volumique moyenne sur le volume de la poéle, montrer que la puissance
pdpyw?Igeats

64R?
5. On dispose de poéles en aluminium et en fonte. Bien que ’aluminium soit environ 40 fois plus conducteur
électriquement que la fonte, on choisira la poéle en fonte : pourquoi 7 On donne pu, = 80 pour la fonte et
e = 1 pour Ialuminium.

moyenne totale induite s’écrit : Pj,q =

e 2 272 2,2
Réponses: 2- E(r,t) = %ROW sin(wt) 3-p = %



VI. Cable coaxial or |
e
MY ez
Un cable coaxial est constitué de deux conducteurs (2.1)
cylindriques coaxiaux infinis, de rayons respectifs a
et b (avec a < b). L’espace entre les deux conduc- r /
teurs est assimilé & du vide. On étudie le champ a i(z,t)

données cylindriques (r,0, z) d’axe (Oz) colinéaire &
I’axe du cable. Le conducteur intérieur est parcouru

par un courant électrique i(z,t) = igcos(wt — kz) \
tandis que le conducteur extérieur est parcouru par

—i(z,1).

électromagnétique (ﬁ,ﬁ) dans le cable en coor- ( ()

On suppose qu’en un point M de coordonnées (r,0,z), le champ électromagnétique est de la forme :
E (M, 1) = Eo(r) cos(wt — kz)&; et B(M,t) = Bo(r) cos(wt — k2)e).

1. Justifier le fait que les champs ne dépendent pas de @ et le fait que le champ magnétique est orthoradial.
Préciser la forme des lignes de champ magnétique.

2. On se place dan I’hypothese de régimes quasi-stationnaires, le théoréme d’Ampere est donc valable. En
déduire, I'expression de By(r) pour r < a, a <r < bet r > b.
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3. Déduire de I'équation de Maxwell-Faraday, que 'on a Ey(r) = pour r < a < b. On donne en

coordonnées cylindriques:
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4. Exprimer la valeur moyenne du vecteur de Poynting pour » < a, a < r < b et »r > b. En déduire la
puissance moyenne se propageant dans le cable.
~ Holo focip —s pocig b

Réponses: 2- pour a < r < b: By(r) = Srr 4- < B >= 2,2 6z poura <r < bet<P>= 1n(a)
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VII. Décharge d’une boule conductrice dans ’air

On constate expérimentalement qu'une boule conductrice de rayon R, uniformément chargée en surface et
abandonnée dans l'air avec une charge @)y se décharge. Pour interpréter ce phénomene, on suppose que lair
est un milieu faiblement conducteur de conductivité v (dans I’air la densité volumique de charges est nulle).
L’origine de ’espace étant prise au centre O de la boule, on adopte les coordonnées sphériques de centre O.

1. Le théoreme de Gauss est-il valable? Exprimer le champ électrique en M situé a 'extérieur de la boule

_>
conductrice a l'instant ¢ ou la charge de la boule est égale & Q(t). En déduire j, le vecteur densité de
courant dans l'air.

2. Déduire des symétries que le champ magnétique est nul en tout point.
3. Déduire de I’équation de Maxwell-Ampere, I’équation différentielle vérifiée par Q(¢). La résoudre.

4. Calculer I'énergie électrique présente dans tout ’espace a ’extérieur de la boule a I'instant ¢t. En déduire
I’énergie perdue par la boule entre t = 0 et t — oo.
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VIII. Effet Meissner

Un matériau supraconducteur est caractérisé par la relation locale j = 5 appelée équation de London
Ho

N s P —
ou ¢ est une constante positive et Z un vecteur défini par § = rotz.
L’étude est conduite en régime statique.

Le matériau supraconducteur occupe l’espace compris entre les plans z = —a et z = +a avec § << a. A
lextérieur du matériau regne un champ magnétique uniforme et constant ﬁ = Byeq.

On admet que le champ magnétique est continu.

1. On donne r—o_%(r—o_%ﬁ) = grad(divﬁ) _AB. Rappeler et utiliser les équations de Maxwell Thomson et de

Maxwell Ampere pour montrer que dans le supraconducteur, le champ magnétique vérifie: A§ =5 ().

2. Déterminer les variables dont dépend le champ magnétique ﬁ dans le supraconducteur. On admet que
ce champ magnétique est selon Oz. Déduire de 1’équation (x) 1’équation différentielle vérifiée par B et la
résoudre.
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3. Déduire de I'équation de Maxwell-Ampere, ’expression de j .

4. On donne le code python et le résultat de son exécution:

9 import numpy as np 10
16 import matplotlib.pyplot as plt

19 0.8 1

12 a=0.1
13 d=0.1%*a
14 z=np.linspace(-a,a,1680) 044
15 yi=np.cosh{z/d)/np.cosh{a/d)

16 y2=np.sinh{z/d)/np.cosh{a/d) 021
17 plt.plot(z,y1) ool
-" p}:'gilg({(' Ay -0.100-0.075-0.050 -0.025 0000 0025 0050 0075 0100
13 pLC.XLaDe KL m xmj)

20 plt.ylabel{'yi')
21 plt.show()
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23 plt.plot(z,y2,label="y2"') 0501
24 plt.grid() °2%]

y2

5 plt.xlabel{'x(m)") 0.00 |
6 plt.ylabel('y2') -025 1
7 plt.show() 050

—0.75 1

—1.00 1
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xim})

Utiliser ces courbes pour décrire le champ magnétique et les courants dans un supraconducteur.

2B B cosh(z/d)
4, . — = _ = =
Réponses: 2- B = B(z)ez, 2 52 0 et B(z) = BOC()ST(;/(S)'



