
PC - Lycée Dumont D’Urville

TD équations de Maxwell

I. Equation de Maxwell-Gauss

Des charges sont réparties uniformément entre les
plans d’équation x = −e et x = +e. Soit la den-
sité volumique de charges s’écrit: ρ(x < −e) = ρ(x >
e) = 0 et ρ(−e < x < e) = ρ0. On néglige les effets
de bord.

x=-e x=e Ox

Oy

Oz

ρ=0 ρ=0
ρ=ρ0

1. Simplifier l’expression du champ électrique à l’aide des symétries et des invariances. Que dire du champ
électrique en O?

2. Déduire de l’équation de Maxwell-Gauss l’expression du champ électrique en tout point M . On admet
que le champ électrique est continu.

Réponses: 1-
−→

E (O) =
−→
0 2- x < −e :

−→

E = −

ρ0e

ǫ0

−→ex, −e < x < e :
−→

E =
ρ0x

ǫ0

−→ex et x > e :
−→

E =
ρ0e

ǫ0

−→ex

II. Equation de Maxwell-Ampère

Soit un câble cylindrique de rayon R et d’axe Oz par-

couru par un vecteur densité de courant
−→

j =
j0r

2

R2
−→ez .

1. Exprimer l’intensité I du courant qui traverse ce
câble.

2. Simplifier l’expression du champ magnétique à
l’aide des symétries et des invariances.

Oz

R

j

3. Déduire de l’équation de Maxwell-Ampère en régime stationnaire, l’expression du champ magnétique en

tout point. On donne :
−→
rot

−→

A = (
1

r

∂Az

∂θ
−

∂Aθ

∂z
)−→er + (

∂Ar

∂z
−

∂Az

∂r
)−→eθ +

1

r
(
∂(rAθ)

∂r
−

∂Ar

∂θ
)−→ez

Réponses: 1- I =
j0πR

2

2
3- r < R:

−→

B =
µ0j0r

3

4R2
−→eθ et r > R:

−→

B =
µ0j0R

2

4r
−→eθ

III. Courants de conduction et de déplacement

On étudie un milieu de conductivité γ pour lequel la densité volumique de courant de conduction vérifie

la loi d’ohm locale. Ce milieu est le siège d’un champ électrique de la forme
−→

E =
−→

E0e
j(ωt+φ) en notation

complexe.

1. Qu’appelle-t-on courant de déplacement ? Exprimer, en ordre de grandeur, α défini comme le rapport
des amplitudes du courant de conduction sur le courant de déplacement.

2. Calculer α pour des fréquences de 10 Hz à 1010 Hz pour le cuivre et le verre. En déduire une simplifi-

cation de l’équation de Maxwell-Ampère. Données: γCu = 6.107 SI, γverre = 10−6 SI et
1

4πǫ0
= 9.109 SI.

Réponse: α ≈

γ

ǫ0ω
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IV. Flux du vecteur de Poynting

On considère un câble électrique assimilé à un cylin-
dre d’axe Oz, de longueur L, de rayon a, conducteur
ohmique de conductivité γ, parcouru par des courants
indépendants du temps de densité volumique uni-

forme
−→

j = j−→ez . Sa perméabilité est celle du vide
µ0. On néglige les effets de bord.

j

Oz

a

l

1. Déduire des symétries, les directions des champs électrique et magnétique. Préciser la forme des lignes
de champ électrique et magnétique. Etudier les invariances.

2. Exprimer l’intensité I du courant dans le câble et la résistance Rc du câble.

3. Déduire de la loi d’Ohm, l’expression du champ
−→

E . Déduire du théorème d’Ampère le champ magnétique
créé en tout point à l’extérieur du câble.

4. En déduire les expressions du vecteur de Poynting en un point M à la surface du câble et de la puissance
électromagnétique rayonnée par le champ électromagnétique à travers le câble en fonction de la résistance
Rc du câble et de I. Commenter.

Réponses : 3-
−→

E =
I

πa2σ
−→ez 4-

−→

R =
−I2

2σπ2a3
−→er et P = −RcI
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V. Poêle à induction

On se contente de comprendre le principe du
chauffage par induction avec un circuit simple com-
posé d’une unique spire circulaire de centre O et
de rayon R, parcourue par une intensité i(t) =
I0 cos(ωt). On travaille dans un système de coor-
données cylindriques (r, θ, z) dans la base (−→er ,

−→eθ ,
−→ez).

On pose, dans le plan de cette spire, une poêle as-
similée à un cylindre de rayon a < R et d’épaisseur
e, de perméabilité magnétique relative µr et de con-
ductivité électrique γ.

i(t)

a

R
er

eθ

ez

M

r
poele

Dans un souci de simplification, on suppose que le champ magnétique
−→

B (M, t) créé par la spire dans la poêle

est uniforme. On donne : B(M, t) =
µ0µri(t)

2R
.

1. Déterminer la direction de
−→

B (M, t) et de
−→

E (M, t) et préciser la forme des lignes de champ électrique et
de champ magnétique.

2. Rappeler l’équation locale de Maxwell-Faraday, en déduire l’expression du champ électrique. On admet

que
−→

E ne dépend que de r et de t.

On donne :
−→
rot

−→

A = (
1

r

∂Az

∂θ
−

∂Aθ

∂z
)−→er + (

∂Ar

∂z
−

∂Az

∂r
)−→eθ +

1

r
(
∂(rAθ)

∂r
−

∂Ar

∂θ
)−→ez

3. Ce champ électrique induit est responsable de courants de Foucault répartis dans tout le volume du

conducteur. Exprimer la densité de courant volumique
−→

j (M, t) en tout point de la poêle et la puissance
volumique moyenne p dissipée par effet Joule en fonction des données.

4. En intégrant cette puissance volumique moyenne sur le volume de la poêle, montrer que la puissance

moyenne totale induite s’écrit : Pind =
µ2
0µ

2
rγω

2I20 ea
4π

64R2
.

5. On dispose de poêles en aluminium et en fonte. Bien que l’aluminium soit environ 40 fois plus conducteur
électriquement que la fonte, on choisira la poêle en fonte : pourquoi ? On donne µr = 80 pour la fonte et
µr = 1 pour l’aluminium.

Réponses: 2- E(r, t) =
µ0µrI0ωr

4R
sin(ωt) 3- p =

γµ2
0µ

2
rI

2
0ω

2r2

32R2

2



VI. Câble coaxial

Un câble coaxial est constitué de deux conducteurs
cylindriques coaxiaux infinis, de rayons respectifs a
et b (avec a < b). L’espace entre les deux conduc-
teurs est assimilé à du vide. On étudie le champ

électromagnétique (
−→

E ,
−→

B ) dans le câble en coor-
données cylindriques (r, θ, z) d’axe (Oz) colinéaire à
l’axe du câble. Le conducteur intérieur est parcouru
par un courant électrique i(z, t) = i0 cos(ωt − kz)
tandis que le conducteur extérieur est parcouru par
−i(z, t).

Oz

i(z,t)

b

-i(z,t)

ez

er

eθ

M

a

r

On suppose qu’en un point M de coordonnées (r, θ, z), le champ électromagnétique est de la forme :
−→

E (M, t) = E0(r) cos(ωt− kz)−→er et
−→

B (M, t) = B0(r) cos(ωt− kz)−→eθ .

1. Justifier le fait que les champs ne dépendent pas de θ et le fait que le champ magnétique est orthoradial.
Préciser la forme des lignes de champ magnétique.

2. On se place dan l’hypothèse de régimes quasi-stationnaires, le théorème d’Ampère est donc valable. En
déduire, l’expression de B0(r) pour r < a, a < r < b et r > b.

3. Déduire de l’équation de Maxwell-Faraday, que l’on a E0(r) =
µ0i0c

2πr
pour r < a < b. On donne en

coordonnées cylindriques:

−→
rot

−→

A = (
1

r

∂Az

∂θ
−

∂Aθ

∂z
)−→er + (

∂Ar

∂z
−

∂Az

∂r
)−→eθ +

1

r
(
∂(rAθ)

∂r
−

∂Ar

∂θ
)−→ez

4. Exprimer la valeur moyenne du vecteur de Poynting pour r < a, a < r < b et r > b. En déduire la
puissance moyenne se propageant dans le câble.

Réponses: 2- pour a < r < b: B0(r) =
µ0i0
2πr

4- <
−→

R >=
µ0ci

2
0

8π2r2
−→ez pour a < r < b et < P >=

µ0ci
2
0

4π
ln(

b

a
)

VII. Décharge d’une boule conductrice dans l’air

On constate expérimentalement qu’une boule conductrice de rayon R, uniformément chargée en surface et
abandonnée dans l’air avec une charge Q0 se décharge. Pour interpréter ce phénomène, on suppose que l’air
est un milieu faiblement conducteur de conductivité γ (dans l’air la densité volumique de charges est nulle).
L’origine de l’espace étant prise au centre O de la boule, on adopte les coordonnées sphériques de centre O.

1. Le théorème de Gauss est-il valable? Exprimer le champ électrique en M situé à l’extérieur de la boule

conductrice à l’instant t où la charge de la boule est égale à Q(t). En déduire
−→

j , le vecteur densité de
courant dans l’air.

2. Déduire des symétries que le champ magnétique est nul en tout point.

3. Déduire de l’équation de Maxwell-Ampère, l’équation différentielle vérifiée par Q(t). La résoudre.

4. Calculer l’énergie électrique présente dans tout l’espace à l’extérieur de la boule à l’instant t. En déduire
l’énergie perdue par la boule entre t = 0 et t → ∞.

Réponses : 1-
−→
j =

γQ(t)

4πǫ0r2
−→er 3- Q(t) = Q0e

−t/τ 4- l’énergie perdue est
Q2

0

8πǫ0R
.
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VIII. Effet Meissner

Un matériau supraconducteur est caractérisé par la relation locale
−→

j = −

−→

A

µ0δ2
appelée équation de London

où δ est une constante positive et
−→

A un vecteur défini par
−→

B =
−→
rot

−→

A .

L’étude est conduite en régime statique.

Le matériau supraconducteur occupe l’espace compris entre les plans z = −a et z = +a avec δ << a. A

l’extérieur du matériau règne un champ magnétique uniforme et constant
−→

B = B0
−→ex.

On admet que le champ magnétique est continu.

1. On donne
−→
rot(

−→
rot

−→

B ) =
−−→

grad(div
−→

B )−∆
−→

B . Rappeler et utiliser les équations de Maxwell Thomson et de

Maxwell Ampère pour montrer que dans le supraconducteur, le champ magnétique vérifie: ∆
−→

B =

−→

B

δ2
(∗).

2. Déterminer les variables dont dépend le champ magnétique
−→

B dans le supraconducteur. On admet que
ce champ magnétique est selon Ox. Déduire de l’équation (∗) l’équation différentielle vérifiée par B et la
résoudre.

3. Déduire de l’équation de Maxwell-Ampère, l’expression de
−→
j .

4. On donne le code python et le résultat de son exécution:

Utiliser ces courbes pour décrire le champ magnétique et les courants dans un supraconducteur.

Réponses: 2-
−→

B = B(z)−→ex,
d2B

dz2
−

B

δ2
= 0 et B(z) = B0

cosh(z/δ)

cosh(a/δ)
.
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