PC - Lycée Dumont D’Urville i
DS 7 de physique

Le sujet comprend trois probléemes et un exercice indépendants a traiter dans ’ordre de votre choix. Il est
demandé de numéroter les pages au format i/N ou 4 est le numéro de la page et N le nombre de pages.

Il est demandé un effort de présentation (tirer un trait entre chaque question et encadrer les résultats) et de
rédaction (prendre soin de nommer les lois utilisées, les hypotheses pour les appliquer et expliquer clairement).

I. Probleme I : Etude d’un diapason

Données: pig = 471077 Hom™*
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Ce probleme porte sur ’étude d’un oscillateur mécanique faiblement amorti tres utilisé en musique : le
diapason. La partie I est indépendante des parties II et III.

Partie I - Etude de la réponse percussionnelle

Les branches du diapason sont décrites comme un os- (k,Lo)

cillateur masse-ressort oscillant selon un axe horizon-

tal, amorti par frottement fluide linéaire en la vitesse. WO—’
La coordonnée z repere la position de la masselotte = z
sur I’horizontale. 0

On note m la masse de la masselotte, k la constante de raideur du ressort linéaire équivalent, /y sa longueur
a vide et [(t) sa longueur a l'instant ¢. De plus, on suppose que la masselotte est soumise & une force de
frottement de la forme ? = -\7.

A Tlinstant ¢ = 0, on percute 'une des branches du diapason, ce qui provoque la mise en mouvement de
chaque branche. On suppose le choc instantané, c’est-a-dire que les branches pseudo-oscillent librement pour

t > 0. Une note est alors émise.

1. Onnote z(t) = I(t) —lo, montrer que z(t) vérifie une équation différentielle de la forme %+ ﬂé—kw%z =0.

Q

Exprimer wq et @ en fonction de k, m et .

2. Sachant que I'on obtient des pseudo-oscillations, établir 'expression littérale de z(t) en fonction de k, m
et A et de constantes d’'intégration que ’on ne cherchera pas a déterminer.

3. Pour estimer le facteur de qualité du diapason, on réalise un enregistrement a ’aide d’un microphone
en utilisant un diapason équipé d’une caisse de résonance en bois permettant d’augmenter l'intensité de
I’émission sonore. On obtient les deux enregistrements suivants:
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Exploiter ces courbes pour estimer numériquement au mieux la fréquence propre fy et le facteur de qualité
Q@ du diapason (on reproduira sommairement la (ou les) figure(s) utilisées pour faire apparaitre la méthode
graphique employée pour ces déterminations).

Partie II - Génération du champ excitateur

Un solénoide long (longueur L, rayon R), d’axe Oz, Ur
parcouru par un courant d’intensité I et possédant n .
spires par unité de longueur est utilisé pour générer 0 Uz

un champ magnétostatique B.

4. Dans l'approximation du solénoide infini, justi-
fier que le champ magnétostatique en tout point M a
Pintérieur du solénoide est de la forme B = B (r (7;
ou r est la distance de M a la droite Oz et U, le
vecteur unitaire dirigeant ’axe Oz dans le sens des z
croissants.

5. Justifier que le champ magnétostatique est uni-
forme a l'intérieur du solénoide infini. Etablir son L RRRERRRRRRE
expression en admettant qu’il est nul a 'extérieur.

6. Estimer la norme By de ce champ pour un bobinage de 1,0.1072 spires.m ™! avec I = 0,1 A. Comparer
cette valeur & 'ordre de grandeur de la valeur du champ magnétique terrestre.

7. Quel est Iintérét d’avoir supposé le solénoide infini? A quelle(s) condition(s) cette approximation est-elle
valide?

On suppose maintenant que le courant i(¢t) = I cos(wt) parcourant les spires du solénoide est lentement
variable.



8. En admettant que l'expression du champ magnétique obtenue précédemment reste valide a condition de
remplacer I par i(t), justifier qu’en tout point M a Pintérieur du solénoide, le champ électrique ﬁ(M ,1) est
de la forme: ﬁ(M7 t) = E(r, t)[79>.

0B

9. On donne I’équation de Maxwell Faraday: 7ol E = —22 . Déduire de cette équation ’expression de

ot

E(r,t) en fonction de I, pg, r, n et sin(wt).
Partie III - Interaction entre le champ excitateur et une branche du diapason

Le champ électromagnétique obtenu précédemment est utilisé pour forcer des oscillations mécaniques des
branches du diapason. Les branches du diapason sont positionnées pres d’une extrémité du solénoide.

solénoide

vers systéme

%! d'acquisition

On admet que le champ magnétique dans l’air au voisinage du diapason s’écrit ﬁ(M 1) = b(2) cos(wt)[jz>
avec b(z) = Bo(l — %) Le fer qui constitue les branches du diapason s’aimante en présence du champ

magnétique excitateur. On admet qu’en présence du champ magnétique ?(M ,t) dans l'air, 'élément de
VO_h>1H16 dr, centré sur le point M dans le diapason, se comporte comme un aimant de moment magnétique
dM(M,t) tel que:

d./T/l>(M, t) = X?(M, t)dr ol x est une constante réelle positive

On rappelle que la force subie par un dipole magnétique de moment /T/l> placée dans un champ magnétique
(M, t) s’écrit:

P = (M.grad)B

10. On consideére un élément de volume dr, centré sur le point M, situé au voisinage de de la surface du
diapason. Montrer que la force dFTn> subie par cet élément de volume, dans le cadre du modele développé
dans cette partie, s’écrit a ’ordre le plus bas : dm = —acos? (wt)dﬂ?z> oll & est une constante positive que
I’on exprimera en fonction de y, By et R. Montrer que les dipdles induits sont attirés vers la zone de champ
fort.

11. Pour un diapason résonant a la fréquence 256 H z, a quelle fréquence doit-on régler la source du courant
i(t) pour exciter le diapason & résonance?

IT. Probleme II: Electrocardiogramme

L’électrocardiogramme permet un suivi du fonctionnement cardiaque par le simple port d’électrodes collées
a la peau. Nous allons d’abord étudier le fonctionnement électrique des nerfs puis appliquer le modele du
dipole électrostatique a 1’électrocardiogramme.

Partie A: fonctionnement électrique d’un nerf
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Un neurone est une cellule complexe dont nous allons étudier une partie, I’axone, ou fibre nerveuse, qui
conduit le signal nerveux électrique dans le corps humain.

On modélise un axone par un cylindre infiniment long d’axe (O, U), de rayon intérieur a. Il est constitué
d’une membrane d’épaisseur b et de permittivité relative €, et d’'un axoplasme a l'intérieur de cette membrane
(voir figure).

Données: a =5,0 pm, b=7,0 nm, ¢, = 8,0, ¢g = 8,85.107'12 F.m~L.

L’axoplasme est au potentiel V4 tandis que le liquide extérieur est au potentiel Vg. La face intérieure de la
membrane porte la charge +@Q (pour r = a) et la face extérieure de la membrane porte la charge —Q (pour
r =a+b). Ces charges sont uniformément réparties sur les surfaces.

On travaille en régime stationnaire. On utilise la base locale (Uz , (7(;, (7;) et les coordonnées cylindriques
(r,0,z). On admet que les calculs du champ dans la membrane sont identiques & ceux du vide & condition
de remplacer €y par €gpe,.

1. Montrer que le champ électrique E(M ) dans la membrane ne dépend que de r et est selon U—>T Déduire
du théoreme de Gauss I'expression du champ électrique dans la membrane en fonction de @, €, €., a, r et
L (la longueur de axone).

2. En déduire 'expression de la différence de potentiel V4 — Vg en fonction de Q, €q, €, a, b et L. Dans
la suite on suppose a >> b. Donner une expression approchée de V4 — Vg. On donne In(1 4+ z) ~ x pour
<<l

3. En déduire la capacité C' de la membrane. On trouve dans la littérature médicale ¢,,, = 1.1072 F.m ™2
pour la capacité par unité de surface de membrane. Vérifier que cette valeur est compatible avec I’expression
de C trouvée.

On donne V4 — Vg =

r=a).

—60 mV. Calculer la densité surfacique de charge de la membrane intérieure (en

En réalité ce potentiel et cette répartition de charges

correspond a une situation ot l'axone est au repos. Xfl‘v? Ve S;%;:ge‘:?,; ?Ig?gmgndc?ion
Quand un influx nerveux se propage, le potentiel - du temps lors de la
change suivant des mécanismes biologiques que nous propagation d’'un signal
n’étudierons pas ici (voir figure 10). On appelle le i e électrique

signal correspondant potentiel d’action. . N Repolarisation

Lorsque le coeur bat, il y a un potentiel d’action qui se o

propage dans le coeur. Par conséquent, on peut con- il

sidérer qu’une partie du coeur est chargée positive- "“"i

ment et une autre partie négativement. Cela ressem- -60 Foselyparpalanisition

ble a un dipole électrostatique. Cette modélisation sum-Imn

tres simple permet d’expliquer de fagon tres satis-
faisante les électrocardiogrammes.

temps (ms)

Partie B: réalisation et exploitation d’un électrocardiogramme

Dans notre modele simplifié, le muscle cardiaque se comporte comme un dipole électrique qui varie suffisam-
ment lentement pour que 'on puisse appliquer les formule de la statique. On rappelle que le potentiel créé

au point M de position O

7.0M

M) = .
V(M) 4meqgOM3

Un électrocardiogramme est un tracé contenant 12
lignes correspondant a la mesure de 12 tensions
mesurées entre différentes électrodes situées sur le
corps humain. Nous n’allons nous intéresser qu’a
une de ces mesures de tension, entre deux électrodes
placées 'une au poignet gauche (G) et l'autre au
poignet droit (D). On mesure alors la tension U; =
Ve — Vp en fonction du temps. Le coeur placé en O
est a égale distance d des électrodes d = OG = OD
(figure 11).

= rU, par un dipole électrostatique placé en O de moment dipolaire P s’écrit

Figure 11 - Position des
electrodes
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nelle a la projection du dipdle électrostatique du coeur sur la direction U—; entre D et G. On notera K la
constante de proportionnalité, qu’on exprimera en fonction de €g, d et de DG la distance entre G et D.

4. En utilisant la formule 7 s’écrit V(M) donnée plus haut, montrer que U; est proportion-

5. Le tableau Figure 12 représente le dipdle électrique du coeur a différents instants ¢; successifs pendant
un cycle cardiaque (un point représente un dipole nul). On précise l'orientation du vecteur U, en bas &
droite.
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Figure 12 - Evolution du dipdle électrique cardiaque en fonction du temps (avec b < ti+1)

Sur la Figure 13, auquel de ces 4 graphes (représentant la tension U; au cours du temps) 'enregistrement
peut-il correspondre? Justifier soigneusement votre réponse.
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Figure 13 - 4 des 12 enregistrements d'un ECG

III. Probleme 111 : effet Hall O
e i

Soit une portion de conducteur de dimensions a, b, h. |
Ce conducteur est inséré dans un circuit parcouru par S
un courant d’intensité I > 0. On noteran j la den-

sité volumique de porteurs de charge et ¥ la vitesse h
d’un porteur de charge dans le volume. Les particules o
portent la charge ¢ dont on ne connait & priori pas le a
signe. On suppose dans un premier temps qu’il n’y a

qu’un seul type de porteurs.

Approche qualitative de Ueffet Hall

1. Rappelez I'expression de 7, vecteur densité volumique de courant, en fonction n, ¢ et 7. et du vecteur
vitesse d_’1>1n porteur de charge. Si les porteurs de charges sont des électrons de charge g = —e, quel est le
sens de j 7 quel est le sens de ¥?

On place le volume dans un champ magnétique B = Boaj avec By > 0, supposé uniforme a 1’échelle de
I’échantillon.

2. En considérant la direction et le sens de la force exercée par le champ magnétique sur un porteur de
charge, expliquer en quelques mots pourquoi on voit apparaitre une tension entre les faces d’équations z = 0
et z = h du parallélépipede.

Faire deux schémas indiquant le signe des charges apparaissant sur chaque face : dans le cas o1 ¢ = —e <0
et dans le cas ou g = +e > 0.

3. Expliquer en pratique comment on peut simplement vérifier le signe des porteurs de charges avec un
voltmetre.

Approche quantitative de Ueffet Hall (cas des électrons porteurs)

On se place dans le cas ou les charges mobiles sont des électrons, donc ¢ = —e. On notera n. leur densité
volumique et 77 leur vitesse. On suppose qu’apres un régime transitoire au cours duquel des charges ont



commencé a s’accumuler sur 'une des faces, on atteint un régime permanent ou la quantité de charges
accumulées sur les faces ne varie plus, donnant lieu a la création d’un champ électrique de Hall uniforme
entre les faces noté Eg 1. Par ailleurs les porteurs de charges mobiles ont repris leur mouvement d’ensemble

4 la vitesse ¥ uniforme et constante suivant Oz, I'intensité du courant électrique est toujours I.

4. En utilisant la partie ”approche qualitative de l'effet Hall”, expliquer quel est le sens de E_H> . Etablir, en
s’intéressant au mouvement d’un porteur de charge, la relation By = —vZA

5. En projetant suivant Oz la relation précédente, donner 'expression de Ey en fonction de By et v, puis
en fonction de By, e, n., I et des dimensions du conducteur.

6. Exprimer Uy = V(2 = h) — V(z = 0), la tension de Hall.
7. Dans le cas d’'un conducteur comme le cuivre, les seuls porteurs sont des électrons. On suppose que

dans le cristal chaque atome de cuivre libere un électron de conduction. En utilisant les données du tableau
calculer la tension de Hall Uy.

Masse molaire du cuivre M = 63,5 g.mol ™!
Masse volumique du cuivre © =28 900 kg.m™>
Constante d’Avogadro N, = 6,02.10% mol~*
Charge élémentaire e=1,610""7C
Champ magnétique By=0,1T
Dimensions du conducteur | h =55 mmet a=5b=0,2 mm
Intensité du courant I=0,14

IV. Exercice: la foudre

Un éclair est associé a un déplacement de charges

soit a un courant électrique. Dans I’air, on assimile

ce courant & celui d’un fil rectiligne, parcouru par un (0
courant d’intensité i(¢) uniformément réparti. Dans |

le sol, on suppose que la densité de courant volu- T

mique est radiale, de la forme j = j(r,t)&; ot &, est N

le vecteur unitaire radial de la base sphérique. Le sol . y
possede une conductivité électrique 4. Un homme se j ~.___-
trouve a la distance moyenne d du point d’impact de er

la foudre et la distance entre ses pieds est notée p.

(T
1. Montrer que le champ électrique dans le sol a pour expression E = 5 i )2
YT

2. Exprimer la différence de potentiel U, > 0 entre les pieds de 'homme fonction de p, d, i(t) et ~.
10 1 0
of o . f ? of a2,
or rsin 6 3¢

3. La résistance moyenne du corps humain est notée R. Exprimer l'intensité I du courant qui traverse le
corps humain.

On donne 'opérateur gradient en coordonnées sphériques : gra; ad f=



