
PC - Lycée Dumont D’Urville

DS 7 de physique
Le sujet comprend trois problèmes et un exercice indépendants à traiter dans l’ordre de votre choix. Il est
demandé de numéroter les pages au format i/N où i est le numéro de la page et N le nombre de pages.

Il est demandé un effort de présentation (tirer un trait entre chaque question et encadrer les résultats) et de
rédaction (prendre soin de nommer les lois utilisées, les hypothèses pour les appliquer et expliquer clairement).

I. Problème I : Etude d’un diapason

Données: µ0 = 4π10−7 H.m−1

Ce problème porte sur l’étude d’un oscillateur mécanique faiblement amorti très utilisé en musique : le
diapason. La partie I est indépendante des parties II et III.

Partie I - Étude de la réponse percussionnelle

Les branches du diapason sont décrites comme un os-
cillateur masse-ressort oscillant selon un axe horizon-
tal, amorti par frottement fluide linéaire en la vitesse.
La coordonnée z repère la position de la masselotte
sur l’horizontale.

On note m la masse de la masselotte, k la constante de raideur du ressort linéaire équivalent, l0 sa longueur
à vide et l(t) sa longueur à l’instant t. De plus, on suppose que la masselotte est soumise à une force de

frottement de la forme
−→
f = −λ−→v .

À l’instant t = 0, on percute l’une des branches du diapason, ce qui provoque la mise en mouvement de
chaque branche. On suppose le choc instantané, c’est-à-dire que les branches pseudo-oscillent librement pour
t > 0. Une note est alors émise.

1. On note z(t) = l(t)− l0, montrer que z(t) vérifie une équation différentielle de la forme z̈+
ω0

Q
ż+ω2

0
z = 0.

Exprimer ω0 et Q en fonction de k, m et λ.

2. Sachant que l’on obtient des pseudo-oscillations, établir l’expression littérale de z(t) en fonction de k, m
et λ et de constantes d’intégration que l’on ne cherchera pas à déterminer.

3. Pour estimer le facteur de qualité du diapason, on réalise un enregistrement à l’aide d’un microphone
en utilisant un diapason équipé d’une caisse de résonance en bois permettant d’augmenter l’intensité de
l’émission sonore. On obtient les deux enregistrements suivants:
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Exploiter ces courbes pour estimer numériquement au mieux la fréquence propre f0 et le facteur de qualité
Q du diapason (on reproduira sommairement la (ou les) figure(s) utilisées pour faire apparâıtre la méthode
graphique employée pour ces déterminations).

Partie II - Génération du champ excitateur

Un solénöıde long (longueur L, rayon R), d’axe Oz,
parcouru par un courant d’intensité I et possédant n
spires par unité de longueur est utilisé pour générer
un champ magnétostatique

−→
B .

4. Dans l’approximation du solénöıde infini, justi-
fier que le champ magnétostatique en tout point M à
l’intérieur du solénöıde est de la forme

−→
B = B(r)

−→
Uz

où r est la distance de M à la droite Oz et
−→
Uz le

vecteur unitaire dirigeant l’axe Oz dans le sens des z
croissants.

5. Justifier que le champ magnétostatique est uni-
forme à l’intérieur du solénöıde infini. Établir son
expression en admettant qu’il est nul à l’extérieur.

Oz

R r

I

Ur

Uz

M
Uθ

L

6. Estimer la norme B0 de ce champ pour un bobinage de 1, 0.10−3 spires.m−1 avec I = 0, 1 A. Comparer
cette valeur à l’ordre de grandeur de la valeur du champ magnétique terrestre.

7. Quel est l’intérêt d’avoir supposé le solénöıde infini? À quelle(s) condition(s) cette approximation est-elle
valide?

On suppose maintenant que le courant i(t) = I cos(ωt) parcourant les spires du solénöıde est lentement
variable.
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8. En admettant que l’expression du champ magnétique obtenue précédemment reste valide à condition de
remplacer I par i(t), justifier qu’en tout point M à l’intérieur du solénöıde, le champ électrique

−→
E (M, t) est

de la forme:
−→
E (M, t) = E(r, t)

−→
Uθ.

9. On donne l’équation de Maxwell Faraday:
−→
rot

−→
E = −

∂
−→
B

∂t
. Déduire de cette équation l’expression de

E(r, t) en fonction de I, µ0, r, n et sin(ωt).

Partie III - Interaction entre le champ excitateur et une branche du diapason

Le champ électromagnétique obtenu précédemment est utilisé pour forcer des oscillations mécaniques des
branches du diapason. Les branches du diapason sont positionnées près d’une extrémité du solénöıde.

On admet que le champ magnétique dans l’air au voisinage du diapason s’écrit
−→
B (M, t) = b(z) cos(ωt)

−→
Uz

avec b(z) = B0(1 −
z

R
). Le fer qui constitue les branches du diapason s’aimante en présence du champ

magnétique excitateur. On admet qu’en présence du champ magnétique
−→
B (M, t) dans l’air, l’élément de

volume dτ , centré sur le point M dans le diapason, se comporte comme un aimant de moment magnétique
d
−→
M(M, t) tel que:

d
−→
M(M, t) = χ

−→
B (M, t)dτ où χ est une constante réelle positive

On rappelle que la force subie par un dipôle magnétique de moment
−→
M placée dans un champ magnétique

−→
B (M, t) s’écrit:

−→
Fm = (M.

−−→
grad)

−→
B

10. On considère un élément de volume dτ , centré sur le point M, situé au voisinage de de la surface du
diapason. Montrer que la force d

−→
Fm subie par cet élément de volume, dans le cadre du modèle développé

dans cette partie, s’écrit à l’ordre le plus bas : d
−→
Fm = −α cos2(ωt)dτ

−→
Uz où α est une constante positive que

l’on exprimera en fonction de χ, B0 et R. Montrer que les dipôles induits sont attirés vers la zone de champ
fort.

11. Pour un diapason résonant à la fréquence 256 Hz, à quelle fréquence doit-on régler la source du courant
i(t) pour exciter le diapason à résonance?

II. Problème II: Electrocardiogramme

L’électrocardiogramme permet un suivi du fonctionnement cardiaque par le simple port d’électrodes collées
à la peau. Nous allons d’abord étudier le fonctionnement électrique des nerfs puis appliquer le modèle du
dipôle électrostatique à l’électrocardiogramme.

Partie A: fonctionnement électrique d’un nerf
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Un neurone est une cellule complexe dont nous allons étudier une partie, l’axone, ou fibre nerveuse, qui
conduit le signal nerveux électrique dans le corps humain.

On modélise un axone par un cylindre infiniment long d’axe (O,
−→
Uz), de rayon intérieur a. Il est constitué

d’une membrane d’épaisseur b et de permittivité relative ǫr et d’un axoplasme à l’intérieur de cette membrane
(voir figure).

Données: a = 5, 0 µm, b = 7, 0 nm, ǫr = 8, 0, ǫ0 = 8, 85.10−12 F.m−1.

L’axoplasme est au potentiel VA tandis que le liquide extérieur est au potentiel VE . La face intérieure de la
membrane porte la charge +Q (pour r = a) et la face extérieure de la membrane porte la charge −Q (pour
r = a+ b). Ces charges sont uniformément réparties sur les surfaces.

On travaille en régime stationnaire. On utilise la base locale (
−→
Ur,

−→
Uθ,

−→
Uz) et les coordonnées cylindriques

(r, θ, z). On admet que les calculs du champ dans la membrane sont identiques à ceux du vide à condition
de remplacer ǫ0 par ǫ0ǫr.

1. Montrer que le champ électrique
−→
E (M) dans la membrane ne dépend que de r et est selon

−→
Ur. Déduire

du théorème de Gauss l’expression du champ électrique dans la membrane en fonction de Q, ǫ0, ǫr, a, r et
L (la longueur de l’axone).

2. En déduire l’expression de la différence de potentiel VA − VE en fonction de Q, ǫ0, ǫr, a, b et L. Dans
la suite on suppose a >> b. Donner une expression approchée de VA − VE . On donne ln(1 + x) ≈ x pour
x << 1.

3. En déduire la capacité C de la membrane. On trouve dans la littérature médicale cm = 1.10−2 F.m−2

pour la capacité par unité de surface de membrane. Vérifier que cette valeur est compatible avec l’expression
de C trouvée.

On donne VA − VE = −60 mV . Calculer la densité surfacique de charge de la membrane intérieure (en
r = a).

En réalité ce potentiel et cette répartition de charges
correspond à une situation où l’axone est au repos.
Quand un influx nerveux se propage, le potentiel
change suivant des mécanismes biologiques que nous
n’étudierons pas ici (voir figure 10). On appelle le
signal correspondant potentiel d’action.

Lorsque le coeur bat, il y a un potentiel d’action qui se
propage dans le coeur. Par conséquent, on peut con-
sidérer qu’une partie du coeur est chargée positive-
ment et une autre partie négativement. Cela ressem-
ble à un dipôle électrostatique. Cette modélisation
très simple permet d’expliquer de façon très satis-
faisante les électrocardiogrammes.

Partie B: réalisation et exploitation d’un électrocardiogramme

Dans notre modèle simplifié, le muscle cardiaque se comporte comme un dipôle électrique qui varie suffisam-
ment lentement pour que l’on puisse appliquer les formule de la statique. On rappelle que le potentiel créé
au point M de position

−−→
OM = r

−→
Ur par un dipôle électrostatique placé en O de moment dipolaire −→p s’écrit

V (M) =
−→p .

−−→
OM

4πǫ0OM3
.

Un électrocardiogramme est un tracé contenant 12
lignes correspondant à la mesure de 12 tensions
mesurées entre différentes électrodes situées sur le
corps humain. Nous n’allons nous intéresser qu’à
une de ces mesures de tension, entre deux électrodes
placées l’une au poignet gauche (G) et l’autre au
poignet droit (D). On mesure alors la tension U1 =
VG − VD en fonction du temps. Le coeur placé en O
est à égale distance d des électrodes d = OG = OD
(figure 11).
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4. En utilisant la formule −→p s’écrit V (M) =
−→p .

−−→
OM

4πǫ0OM3
donnée plus haut, montrer que U1 est proportion-

nelle à la projection du dipôle électrostatique du coeur sur la direction
−→
Ux entre D et G. On notera K la

constante de proportionnalité, qu’on exprimera en fonction de ǫ0, d et de DG la distance entre G et D.

5. Le tableau Figure 12 représente le dipôle électrique du coeur à différents instants ti successifs pendant
un cycle cardiaque (un point représente un dipôle nul). On précise l’orientation du vecteur

−→
Ux en bas à

droite.

Sur la Figure 13, auquel de ces 4 graphes (représentant la tension U1 au cours du temps) l’enregistrement
peut-il correspondre? Justifier soigneusement votre réponse.

III. Problème III : effet Hall

Soit une portion de conducteur de dimensions a, b, h.
Ce conducteur est inséré dans un circuit parcouru par
un courant d’intensité I > 0. On notera n

−→
j la den-

sité volumique de porteurs de charge et −→v la vitesse
d’un porteur de charge dans le volume. Les particules
portent la charge q dont on ne connait à priori pas le
signe. On suppose dans un premier temps qu’il n’y a
qu’un seul type de porteurs.

Ox

Oy

Oz

O

b

a

h

I
I

Approche qualitative de l’effet Hall

1. Rappelez l’expression de
−→
j , vecteur densité volumique de courant, en fonction n, q et −→v . et du vecteur

vitesse d’un porteur de charge. Si les porteurs de charges sont des électrons de charge q = −e, quel est le
sens de

−→
j ? quel est le sens de −→v ?

On place le volume dans un champ magnétique
−→
B = B0

−→ey avec B0 > 0, supposé uniforme à l’échelle de
l’échantillon.

2. En considérant la direction et le sens de la force exercée par le champ magnétique sur un porteur de
charge, expliquer en quelques mots pourquoi on voit apparaitre une tension entre les faces d’équations z = 0
et z = h du parallélépipède.

Faire deux schémas indiquant le signe des charges apparaissant sur chaque face : dans le cas où q = −e < 0
et dans le cas où q = +e > 0.

3. Expliquer en pratique comment on peut simplement vérifier le signe des porteurs de charges avec un
voltmètre.

Approche quantitative de l’effet Hall (cas des électrons porteurs)

On se place dans le cas où les charges mobiles sont des électrons, donc q = −e. On notera ne leur densité
volumique et −→ve leur vitesse. On suppose qu’après un régime transitoire au cours duquel des charges ont
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commencé à s’accumuler sur l’une des faces, on atteint un régime permanent où la quantité de charges
accumulées sur les faces ne varie plus, donnant lieu à la création d’un champ électrique de Hall uniforme
entre les faces noté

−→
EH . Par ailleurs les porteurs de charges mobiles ont repris leur mouvement d’ensemble

à la vitesse −→ve uniforme et constante suivant Ox, l’intensité du courant électrique est toujours I.

4. En utilisant la partie ”approche qualitative de l’effet Hall”, expliquer quel est le sens de
−→
EH . Établir, en

s’intéressant au mouvement d’un porteur de charge, la relation
−→
EH = −−→veΛ

−→
B .

5. En projetant suivant Oz la relation précédente, donner l’expression de EH en fonction de B0 et ve puis
en fonction de B0, e, ne, I et des dimensions du conducteur.

6. Exprimer UH = V (z = h)− V (z = 0), la tension de Hall.

7. Dans le cas d’un conducteur comme le cuivre, les seuls porteurs sont des électrons. On suppose que
dans le cristal chaque atome de cuivre libère un électron de conduction. En utilisant les données du tableau
calculer la tension de Hall UH .

Masse molaire du cuivre M = 63, 5 g.mol−1

Masse volumique du cuivre µ = 8 900 kg.m−3

Constante d’Avogadro Na = 6, 02.1023 mol−1

Charge élémentaire e = 1, 6.10−19 C
Champ magnétique B0 = 0, 1 T

Dimensions du conducteur h = 5, 5 mm et a = b = 0, 2 mm
Intensité du courant I = 0, 1 A

IV. Exercice: la foudre

Un éclair est associé à un déplacement de charges
soit à un courant électrique. Dans l’air, on assimile
ce courant à celui d’un fil rectiligne, parcouru par un
courant d’intensité i(t) uniformément réparti. Dans
le sol, on suppose que la densité de courant volu-
mique est radiale, de la forme

−→
j = j(r, t)−→er où −→er est

le vecteur unitaire radial de la base sphérique. Le sol
possède une conductivité électrique γ. Un homme se
trouve à la distance moyenne d du point d’impact de
la foudre et la distance entre ses pieds est notée p.

er

r

i(t)

d
p

j

1. Montrer que le champ électrique dans le sol a pour expression
−→
E =

i(t)

2πγr2
−→er .

2. Exprimer la différence de potentiel Up > 0 entre les pieds de l’homme fonction de p, d, i(t) et γ.

On donne l’opérateur gradient en coordonnées sphériques :
−−→
gradf =

∂f

∂r
−→er +

1

r

∂f

∂θ
−→eθ +

1

r sin θ

∂f

∂φ
−→eφ.

3. La résistance moyenne du corps humain est notée R. Exprimer l’intensité I du courant qui traverse le
corps humain.
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