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Correction TD équations de Maxwell
I. Equation de Maxwell-Gauss

1. M appartient aux plans P+(M,−→ex,
−→ey) et P

+(M,−→ex,
−→ez) donc

−→
E (M) appartient à ces plans donc

−→
E (M)

est selon Ox.

Il y a invariance par translation selon Oy et Oz donc
−→
E = E(x)−→ex.

O appartient aux plans P+(O,−→ex,
−→ey), P

+(O,−→ex,
−→ez) et P+(M,−→ey ,

−→ez) donc
−→
E (O) appartient à ces plans

donc
−→
E (O) est nul.

2. On applique l’équation de Maxwell-Gauss div
−→
E =

ρ

ǫ0
avec div

−→
E =

−→
∇.E(x)−→ex =

dE

dx
.

Pour x < −e, ρ = 0:
dE

dx
= 0 donc E(x) = A

Pour −e < x < e, ρ = ρ0:
dE

dx
=

ρ0

ǫ0
donc E(x) =

ρ0x

ǫ0
+B avec B = 0 car E(x = 0) = 0

Pour x > e, ρ = 0:
dE

dx
= 0 donc E(x) = C

On applique la continuité du champ électrique en x = −e: A = −
ρ0e

ǫ0
.

On applique la continuité du champ électrique en x = +e: C = +
ρ0e

ǫ0
.

II. Equation de Maxwell-Ampère

1. L’intensité s’écrit I =

∫∫
−→
j dS−→ez =

∫∫
j0r

2

R2
drrdθ =

j0

R2

∫ R

0

r3dr

∫ 2π

0

dθ =
j0

R2

R4

4
2π =

j0πR
2

2
(ici on

doit calculer l’intégrale, on ne peut pas sortir j de l’intégrale car il n’est pas uniforme).

2. M appartient au plan P+(M,−→er ,
−→ez) donc

−→
B (M) est perpendiculaire à ce plan donc

−→
B (M) est selon −→eθ .

Il y a invariance par translation selon Oz et par rotation autour de Oz donc
−→
B = B(r)−→eθ .

3. L’équation de Maxwell-Ampère en régime stationnaire s’écrit
−→
rot

−→
B = µ0

−→
j avec Br = Bz = 0 et

Bθ = Bθ(r).

On a donc
−→
rot

−→
B =

1

r

d

dr
(rB(r))−→ez .

Pour r < R on a
−→
j =

j0r
2

R2

−→ez soit
1

r

d

dr
(rB(r)) = µ0

j0r
2

R2
donc

d

dr
(rB(r)) = µ0

j0r
3

R2
et rB(r) = µ0

j0r
4

4R2
+A

ou encore B(r) = µ0

j0r
3

4R2
+

A

r
. On doit avoir A = 0 pour que le champ magnétique ne diverge pas quand r

tend vers zéro.

Pour r > R on a
−→
j =

−→
0 soit

1

r

d

dr
(rB(r)) = 0 ou encore

d

dr
(rB(r)) = 0 donc rB(r) = C et B(r) =

C

r
.

On trouve la constante C en écrivant que le champ magnétique est continu en r = R soit: B(r = R) =

µ0

j0R
3

4R2
=

C

R
donc C = µ0

j0R
2

4
.

III. Flux du vecteur de Poynting

1. M appartient au plan P+(M,−→er ,
−→ez) et au plan P−(M,−→er ,

−→eθ) donc
−→
B (M) est perpendiculaire à P− et

−→
E (M) est perpendiculaire à P+ soit

−→
B (M) est selon −→eθ : les lignes de champ magnétique sont des cercles

centrés sur Oz et
−→
E (M) est selon −→ez : les lignes de champ électrique sont des droites parallèles à Oz.

Il y a invariance par translation selon Oz par rotation autour de Oz donc
−→
B (M) = B(r)−→eθ et

−→
E (M) =

E(r)−→ez .

2. On a I = jπR2 (pas d’intégrale à calculer car
−→
j est uniforme).

On a Rc =
L

γπa2
: la résistance mesure l’opposition du câble à laisser passer le courant, plus la section du
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câble et la conductivité sont faibles et plus la résistance est grande.

3. La loi d’Ohm conduit à
−→
E =

−→
j

γ
=

I

γπa2
−→ez .

On applique le théorème d’Ampère sur un contour circulaire de rayon r, centré sur Oz et orienté selon
−→n = +−→ez soit C = B(r)2πr = µ0Ienlaces.

Pour r > R: Ienlaces = I soit
−→
B =

µ0I

2πr
−→eθ .

4. On en déduit le vecteur de Poynting
−→
R =

−→
EΛ

−→
B

µ0

= −
I

γπa2
I

2πr
−→er = −

I2

2γπ2a2r
−→er .

Soit à la surface du câble:
−→
R (r = a) = −

I2

2γπ2a3
−→er : le vecteur de Poynting est selon −

−→er , la puissance est

donc reçue par le câble.

La puissance reçue est égale au flux du vecteur de Poynting à travers la surface latérale du câble soit

P = −
I2

2γπ2a3
2πLa = −

I2L

γπa2
= −RcI

2: la puissance reçue par le câble est ensuite entièrement sous forme

de chaleur par effet Joule.

IV. Correction : chauffage par induction

1. M appartient au plan P+(M,−→er ,
−→eθ) et au plan P−(M,−→er ,

−→ez).

Le champ magnétique en M est perpendiculaire au plan P+ donc il est selon Oz, les lignes de champ
magnétique sont des droites parallèles à Oz.

Le champ électrique en M est perpendiculaire au plan P− donc il est selon −→eθ , les lignes de champ électrique
sont des cercles centrés sur Oz.

2. On utilise l’équation de Maxwell Faraday :
−→
rot

−→
E = −

∂
−→
B

∂t
=

µ0µr

2R
ωI0 sin(ωt)

−→ez .

Ici Er = Ez = 0 et Eθ = E(r, t), donc on a
−→
rot

−→
E =

1

r

∂(rEθ)

∂r
−→ez .

Ainsi l’équation de Maxwell conduit à
1

r

∂(rEθ)

∂r
=

µ0µr

2R
I0ω sin(ωt) soit

d(rEθ)

dr
= r

µ0µrI0

2R
ω sin(ωt). On

intègre par rapport à r : rEθ =
µ0µrI0r

2ω

4R
sin(ωt) + A donc Eθ =

µ0µrI0rω

4R
sin(ωt) +

A

r
(ici A = 0 car le

champ électrique doit être défini en r = 0).

On a donc
−→
E =

µ0µrI0rω

4R
sin(ωt)−→eθ .

3. On en déduit
−→
j en appliquant loi d’Ohm locale:

−→
j = γ

−→
E =

γrµ0µrI0ω

4R
sin(ωt)−→eθ .

La puissance volumique liée à l’effet joule est la puissance cédée aux charges par le champ électrique c’est
dP

dτ
= p =

−→
j .

−→
E = γE2 = γ(

rµ0µrI0ω

4R
sin(ωt))2 et donc en valeur moyenne par rapport au temps < p >=

γ

2
(
rµ0µrI0ω

4R
)2.

4. En coordonnées cylindriques, l’élément de volume dτ s’écrit dr.rdθ.dz soit la puissance totale :

P =

∫ ∫∫
γ

2
(
rµ0µrI0ω

4R
)2rdrdθdz =

γ

2
(
µ0µrI0ω

4R
)2
∫ a

0

r3dr

∫ 2π

0

dθ

∫ e

0

dz =
µ2
0µ

2
rI

2
0ω

2γ

32R2

a4

4
2πe =

µ2
0µ

2
rI

2
0ω

2γa4πe

64R2
.

5. On a µr,fonte = 80µr,al et γal = 40γfonte .

La puissance dépend de µ2
rγ soit µ2

r,fonteγfonte =
802

40
µ2
r,alγal = 160µ2

r,alγal donc la puissance dégagée par la

fonte est 160 fois plus grande que par l’aluminium, la cuisson sera plus efficace dans la poele en fonte.

V. Câble coaxial

1. Il y a invariance par rotation autour de Oz donc la variable θ n’intervient pas.

Attention ici les courants dépendent de z donc il n’y a pas invariance par translation selon Oz, la variable z
intervient dans les expressions.

2



M appartient au plan P+(M,−→er ,
−→ez) donc le champ magnétique en M est perpendiculaire à ce plan donc

−→
B (M, t) est selon −→eθ , les lignes de champ magnétique sont des cercles centrés sur Oz.

2. On choisit pour contour d’Ampère un cercle de rayon HM centré sur Oz et orienté selon −→ez :

On a C =

∫
B0(r) cos(ωt− kz)−→eθdl

−→eθ = B0(r) cos(ωt− kz)

∫
dl = 2πrB0(r) cos(ωt− kz).

On applique le théorème d’Ampère selon lequel C = µ0Ienlaces.

Pour r < a: il n’y a pas de courant enlacés donc B0(r) = 0

Pour r > b: la somme des courants enlacés est nulle Ienlaces = +i− i = 0 donc B0(r) = 0

Pour a < r < b: Ienlaces = +i(z, t) soit C = 2πrB0(r) cos(ωt− kz) = µ0i0 cos(ωt− kz) donc B0(r) =
µ0i0

2πr
.

3. L’équation de Maxwell- Faraday s’écrit:
−→
rot

−→
E = −

∂
−→
B

∂t
avec ici

−→
E = Er(r, z, t)

−→er (Ez = Eθ = 0). Donc

on a
−→
rot

−→
E =

∂Er

∂z
−→eθ .

Pour a < r < b, l’équation de Maxwell-Faraday donne donc
−→
rot

−→
E =

∂Er

∂z
−→eθ =

µ0i0ω

2πr
sin(ωt − kz)−→eθ soit

∂Er

∂z
=

µ0i0ω

2πr
sin(ωt− kz) soit en intégrant par rapport à z (sans constante d’intégration car les constantes

ne se propagent pas): Er =
µ0i0ω

2πrk
cos(ωt−kz) =

µ0i0c

2πr
cos(ωt−kz) car dans le vide la relation de dispersion

est k =
ω

c
.

4. Le vecteur de Poynting est défini par
−→
R =

−→
EΛ

−→
B

µ0

.

Là où le champ magnétique est nulle, le vecteur de Poynting est nul soit pour r < a et r > b. Donc le câble

ne transporte de l’énergie que pour a < r < b. On a <
−→
R >=<

µ0i
2
0c

4π2r2
cos2(ωt − kz) > −→ez =

µ0i
2
0c

8π2r2
−→ez : le

vecteur de Poynting est dans la direction de propagation de l’onde.

On en déduit la puissance moyenne dans le câble: elle est définie comme le flux du vecteur de Poynting à

travers la section du câble soit < P >=

∫∫
<

−→
R > dS−→n , ici −→n = −→ez et dS = drrdθ (on intègre sur la

surface comprise entre les disques de rayons a et b).

Soit < P >=

∫ b

a

µ0i
2
0c

8π2r2
rdr

∫ 2π

0

dθ =
µ0i

2
0c

4π
ln(

b

a
).
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