
PC - Lycée Dumont d’Urville

Chapitre EM 9 : Ondes em dans le vide
Soit en un point de l’espace des charges et/ou des courants fonctions du temps. Ils créent en leur voisi-
nage un champ électromagnétique variable. Ce champ électromagnétique variable est source d’un champ
électromagnétique en son voisinage... et ainsi de proche en proche, le champ électromagnétique se propage.
Il s’agit donc d’un phénomène ondulatoire.

I. Equations de propagation des champs
−→
E et

−→
B

A savoir :

Soit le vecteur
−→
A = Ax

−→ex +Ay
−→ey +Az

−→ez où Ax, Ay, Az sont des fonctions de x, y et z.

En coordonnées cartésiennes : on note
−→
∇ =

∂

∂x
−→ex +

∂

∂y
−→ey +

∂

∂z
−→ez . On écrit alors:

−−→
gradV =

div
−→
A =

−→
rot

−→
A =

∆
−→
A =

On a aussi div(
−→
rot

−→
A ) =

−→
0 et

−→
rot(

−→
rot

−→
A ) =

−−→
grad(div

−→
A )−∆

−→
A .

Exemple : Calculer la divergence, le rotationnel et le laplacien de
−→
E = E0 cos(βx) sin(ωt− ky)−→ez .

Equations de Maxwell en l’absence de charges et de courants :
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Equation de propagation de
−→
E : c’est l’équation différentielle vérifiée par

−→
E , on la trouve en utilisant

−→
rot(

−→
rot

−→
E ) =

−−→
grad(div

−→
E )−∆

−→
E et les équations de Maxwell.

Equation de propagation de
−→
B : c’est l’équation différentielle vérifiée par

−→
B , on la trouve en utilisant

−→
rot(

−→
rot

−→
B ) =

−−→
grad(div

−→
B )−∆

−→
B et les équations de Maxwell.

Remarques:

- On reconnâıt des équations de type d’Alembert, la vitesse de propagation de l’onde est

- En coordonnées cartésiennes, l’équation de propagation vectorielle donne trois équations de propagation
scalaire. L’équation vérifiée par Ex s’écrit:

On note que Ey , Ez , Bx, By et Bz vérifient la même équation.

- En coordonnées sphériques avec pour variable spatiale unique r soit E = E(r, t) et B = B(r, t).

On donne le laplacien scalaire: ∆E =
1

r

∂2(rE)

∂r2
+

1

r2 sin θ

∂

∂θ
(sin θ

∂E

∂θ
) +

1

r2 sin2 θ

∂2E

∂φ2

II. Solutions en OPPH

Notations : On propose une solution de la forme
−→
E =

−→
E0 cos(ωt−

−→
k .

−−→
OM +φ) : c’est une solution en OPPH

de pulsation ω et de vecteur d’onde
−→
k avec:

ω =

−→
k =

P pour

P pour

H pour
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Exemple pour
−→
k = k−→ex, le champ électrique est de la forme:

Exemple pour
−→
k = −k−→ey , le champ électrique est de la forme:

Exemple pour
−→
k = k cosα−→ex − k sinα−→ez , le champ électrique est de la forme:

Pour une OPPH, on utilise la notation complexe:
−→
E =

L’opérateur
∂

∂t
s’écrit

L’opérateur
−→
∇ s’écrit

L’opérateur ∆ s’écrit

∂2

∂t2
s’écrit

div s’écrit
−→
rot s’écrit

Relation de dispersion : c’est la relation entre k et ω, on l’obtient en injectant la solution proposée pour
−→
E

(ou
−→
B ) dans l’équation de propagation.

Vitesse de phase : elle est définie par Vφ =
ω

k
où ω et k sont dans le même terme de phase.

Structure du champ em :

div
−→
E =

div
−→
B =

−→
rot

−→
E =

−→
rot

−→
B =

Conclusion :
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Dans les exemples suivants donner la direction de polarisation du champ électrique (c’est la direction de
−→
E ),

la direction de propagation, les vecteurs
−→
k , −→u et

−→
B .

−→
E = E0

−→ez cos(ωt− ky)

−→
E = −E0

−→eye
j(ωt+kx)

−→
B = B0

−→ey cos(ωt− kx)

−→
B = B0

−→eze
j(ky+ωt)

Remarque : si on adopte la notation
−→
E =

−→
E0 cos(

−→
k .

−−→
OM − ωt+ φ).

En notation complexe, on a
−→
E =

L’opérateur
∂

∂t
s’écrit

L’opérateur
−→
∇ s’écrit

L’opérateur ∆ s’écrit

∂2

∂t2
s’écrit

div s’écrit
−→
rot s’écrit

On trouve avec ces notations la même relation de dispersion et les mêmes résultats que précédemment.
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Du point de vue énergétique, on rappelle les expressions de:

-la Densité volumique d’énergie em: uem =

- le vecteur de Poynting:
−→
R =

Pour une OPPH caractérisée par le champ électrique
−→
E = E0 cos(ωt−

−→
k .

−−→
OM), exprimer le plus simplement

possible uem, < uem >,
−→
R et <

−→
R >. On donne

−→
AΛ(

−→
CΛ

−→
D) = (

−→
A.

−→
D).

−→
C − (

−→
A.

−→
C ).

−→
D

Attention à la notation complexe: on ne peut pas utiliser la notation complexe pour déterminer les valeurs
instantanées de

−→
R et de uem.

Attention: pour les énergies, la notation complexe ne s’utilise que pour calculer des valeurs moyennes dans
le temps en écrivant:

<
−→
R >=

1

2
Re(

−→
EΛ

−→
B∗

µ0
) et < uem >=

ǫ0

2
Re(

−→
E .

−→
E∗) +

1

2µ0
Re(

−→
B.

−→
B∗).

E∗ désigne le complexe conjugué de E, on le trouve en remplaçant j par −j dans l’expression de E.

Rappel: ej(ωt−kx) =

e−j(ωt−kx) =

Exemple : soit l’onde de champ électrique
−→
E = E0

−→exe
j(ωt+kz). Exprimer le champ magnétique

−→
B as-

socié, la valeur moyenne du vecteur de Poynting et la valeur moyenne de la densité volumique d’énergie
électromagnétique. Exprimer le champ électromagnétique en notation réelle et en déduire le vecteur de
Poynting.
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III. Quand les ondes ne sont pas des OPPH

1. Généralisation aux ondes non harmoniques : les OPPH n’ont pas de réalité physique:

- les sources qui émettent de façon isotrope dans toutes les directions de l’espace émettent des ondes
sphériques, le laser émet une onde gaussienne. Cela remet en cause l’hypothèse onde

- les sources émettent dans un certain domaine de longueur d’onde ∆λ = cτ où τ est la durée d’émission
d’un train d’onde. Cela remet en cause l’hypothèse onde

Les OPPH présentent tout de même un intérêt, en effet une onde non harmonique de direction de propaga-
tion −→u peut se décomposer en somme d’ondes planes harmoniques de pulsation ω différentes et de longueurs
d’onde λ différentes : cela résulte du théorème de superposition que l’on peut appliquer grâce à la

linéarité des équations de Maxwell.

2. Des exemples d’onde qui ne sont pas des OPPH

Exemple 1: soit une onde dont le champ électrique est donné par :
−→
E = E0 cos(ωt) sin(ky)−→ex

Nature de l’onde:

Le champ magnétique associé s’écrit:

La valeur moyenne du vecteur de Poynting est:

Exemple 2: soit une onde dont le champ électrique est donné par :
−→
E = E0 sin(βz) cos(ωt− kx)−→ey

Nature de l’onde:

Le champ magnétique associé se déduit de:
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