
PC - Lycée Dumont D’Urville

TD ondes électromagnétiques dans le vide
I. Equations de Maxwell locales

1. Le champ électrique d’une onde qui se propage dans le vide en absence de charges et de courants,

s’écrit:
−→
E = E0 cos(ωt+ kz)−→ex. Vérifier que c’est compatible avec l’équation de Maxwell Gauss et déduire

de l’application d’une équation de Maxwell bien choisie, l’expression du champ magnétique. Exprimer
également le vecteur de Poynting associé ainsi que sa valeur moyenne par rapport au temps. Commenter.

2. Le champ magnétique s’écrit
−→
B = B0 cos(

πx

a
) sin(ωt)−→ey . Déduire de l’application d’une équation de

Maxwell bien choisie, l’expression du champ électrique associé.

Réponses: 1-
−→
B = −

E0

c
cos(ωt+ kz)−→ey et

−→
R = −

E2

0

2µ0c
cos2(ωt+ kz)−→ez 2-

−→
E =

πB0

aµ0ǫ0ω
sin(

πx

a
) cos(ωt)−→ez et

<
−→
R >=

−→
0

II. Onde émise par un laser

Un laser émet un faisceau cylindrique de diamètre d = 1 cm de puissance P = 10 W . On donne ǫ0 =
8, 85.10−12 F.m−1.

1. Utiliser les données pour calculer l’intensité moyenne du faisceau.

2. On suppose que l’onde émise peut s’écrire sous la forme d’une OPPH se propageant selon Oz, po-
larisée selon Oy et d’amplitude E0. Proposer une expression pour le champ électrique, en déduire le champ
magnétique et la valeur moyenne du vecteur de Poynting.

3. En déduire les amplitudes des champs électrique et magnétique émis par le laser.

Réponses: < ||
−→
R || >= 1, 28.105 W/m−2, E0 = 13 kV.m−1

III. Onde électromagnétique dans le vide

On considère une onde électromagnétique se propageant dans le vide caractérisée par son champ électrique:
−→
E = E0 sin(βy) cos(ωt− αx)−→ez .

1. Caractériser l’onde électromagnétique.

2. Rappeler l’équation de propagation du champ électrique et en déduire la relation de dispersion liant les
paramètres α, β, ω et c.

3. Exprimer le champ magnétique associé à cette onde.

4. Exprimer la valeur moyenne du vecteur de Poynting et conclure.

5. Décomposer l’onde précédente en deux OPPH dont on précisera les caractéristiques (on donne: 2 sina cos b =
sin(a+ b) + sin(a− b)).

Réponses: 2- β2 + α2 =
ω2

c2
3-

−→
B =

E0

ω
(−β cos(βy) sin(ωt− αx)−→ex − α sin(βy) cos(ωt− αx)−→ey) 4- <

−→
R >=

E2

0
α

2ω
sin2(βy)−→ex 5-

−→
k′ = α−→ex + β−→ey et

−→
k′′ = α−→ex − β−→ey

IV. Confinement des ondes em dans un four (CCINP TPC 2020)

L’intérieur du four est assimilable au vide. Les faces
du four sont modélisées par des plans métalliques.

On souhaite déterminer l’expression du champ
électromagnétique présent entre les deux plans
conducteurs distants de d. En représentation
cartésienne, on cherche le champ électrique de l’onde

sous la forme :
−→
E (M, ) = E0 cos(kx+ φ) cos(ωt)−→ez .

On suppose que le champ électrique est nul dans le métal.
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1. Donner 4 qualificatifs permettant de caractériser cette onde.

2. On admet que la composante tangentielle du champ électrique est continue à l’interface vide-métal, en
x = 0 et x = d. En déduire les valeurs de φ et de k. On choisira pour φ la plus petite valeur positive possible
et on exprimera k et ω notamment en fonction d’un entier naturel n.

3. Exprimer le champ magnétique et la valeur moyenne du vecteur de Poynting. Commenter.

4. Représenter l’allure des ondes électrique et magnétique pour le fondamental et pour le premier har-
monique dans la cavité. Citer, dans d’autres domaines de la physique, deux exemples avec lesquels une
analogie pourrait être menée.

Réponses: 2- kn =
nπ

L
3-

−→
B =

E0

c
cos(kx) sin(ωt)−→ey .

V. Réflexion d’une onde sur un métal
(E3A PC 2025)

On travaille dans une base cartésienne (−→ex,
−→ey ,

−→ez).
Une onde électromagnétique plane, progressive, har-
monique, polarisée rectilignement, se propage dans le

vide dans le sens des x croissants. On note
−→
Ei(x, t)

le champ électrique et
−→
Bi(x, t) le champ magnétique

associés à cette onde.

On pose
−→
Ei(x, t) = E0 cos(ωt − kx)−→ey et

−→
Bi(x, t) =

B0 cos(ωt − kx)−→ez avec ω la pulsation et k la norme
du vecteur d’onde.

1. Rappeler la relation entre les amplitudes E0 et B0 des champs électrique et magnétique.

Un conducteur ohmique immobile occupe l’espace x > 0. L’onde arrive sous incidence normale depuis les
x < 0 et donne naissance à une onde réfléchie dans le vide et à une onde transmise dans le conducteur. La
réflexion s’effectue en x = 0 sur un bon réflecteur avec un déphasage de π pour le champ électrique et pas

de déphasage pour le champ magnétique. On a donc :
−→
Er(x, t) = −E0 cos(ωt+ kx)−→ey .

2. En déduire
−→
Br(x, t).

3. Déterminer l’expression de l’onde électromagnétique résultante,
−−−→
Evide(x, t) et

−−−→
Bvide(x, t) dans le demi-

espace x < 0.

L’onde transmise a sa partie électrique quasiment nulle. La partie magnétique de l’onde transmise dans le

conducteur est de la forme
−→
Bt(x = 0, t) = 2B0 cos(ωt)

−→ez et Bt(x → ∞, t) = 0.

4. Citer l’équation locale de Maxwell Ampère. On se place dans l’ARQS magnétique. Simplifier alors
l’équation de Maxwell Ampère. Justifier alors qu’une tranche de conducteur de surface dxdz−→ey est traversée

par le courant infinitésimal di = −
1

µ0

∂Bt

∂x
dxdz.

5. Déterminer la force de Laplace qui s’exerce sur l’élément de longueur
−→
dl = dl−→ey parcouru par le courant

di et plongé dans le champ magnétique
−→
Bt(x, t).

6. Montrer que la force totale qui s’exerce sur un pavé de conducteur de section d’aire dydz et de longueur

infinie s’écrit
−→
dF pave = 2

B2

0

µ0

cos2(ωt)dzdy−→ex. Calculer alors la valeur moyenne temporelle de cette force

<
−→
dF pave >.

Cette force est normale à la surface et est proportionnelle à l’élément de surface dydz, elle correspond

donc à une pression. Elle vérifie <
−→
dF pave >= praddydz

−→ex où prad est la pression de radiation que l’onde
électromagnétique exerce sur le conducteur.

7. Déterminer l’expression de la pression de radiation.

8. Justifier la relation entre la pression de radiation et la moyenne temporelle de la densité d’énergie
électromagnétique de l’onde dans le vide proposée par Maxwell.

La notion de pression de radiation est très intuitive lorsque l’on associe des photons à l’onde électromagnétique.
Un photon de fréquence ν arrive sous incidence normale sur une surface réfléchissante. Lorsqu’il frappe la
surface, il rebondit sans perte d’énergie dans la direction définie par les lois de Snell-Descartes.
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9. Rappeler l’expression de la quantité de mouvement d’un photon. Déterminer la variation de la quantité de
mouvement d’un photon frappant la surface parfaitement réfléchissante en incidence normale. On considère
maintenant un gaz de photons incidents de densité volumique n.

10. Déterminer le nombre de photons frappant la surface S pendant la durée ∆t. A l’aide de la question
précédente et de la deuxième loi de Newton, retrouver la force totale exercée par l’ensemble des photons
incidents sur une section S de la surface réfléchissante pendant la durée ∆t. Donner alors l’expression de la
pression de radiation exercée par les photons sur la surface réfléchissante.

11. Retrouver alors le lien entre la pression de radiation et la densité d’énergie des photons présents dans
le vide (photons incidents et photons réfléchis) décrit par Maxwell.

On considère un faisceau de photons arrivant avec une incidence θ sur une surface réfléchissante. Reprendre
le raisonnement des questions 8 et 9 et montrer que l’expression de la pression de radiation dépend de l’angle
d’incidence comme prad = 2nhν cos2 θ.

Réponses: 2-
−→
Br(x, t) =

E0

c
cos(ωt+kx)−→ez 3-

−−−→
Evide(x, t) = 2E0 ∈ (kx) sin(ωt)−→ey 5- d

−→
F pave =

dydz

µ0

2B2

0
cos2(ωt)−→ex

7- prad =
B2

0

µ0

=< uem > 8- ∆−→p = −
2hν

c
−→ex 9- prad = 2nhν
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