PC - Lycée Dumont D’Urville , L, .
TD ondes électromagnétiques dans le vide

I. Equations de Maxwell locales

1. Le champ électrique d’une onde qui se propage dans le vide en absence de charges et de courants,
s’écrit: = Ej cos(wt + kz)e_; Vérifier que c’est compatible avec ’équation de Maxwell Gauss et déduire
de T’application d’une équation de Maxwell bien choisie, I'expression du champ magnétique. Exprimer
également le vecteur de Poynting associé ainsi que sa valeur moyenne par rapport au temps. Commenter.
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2. Le champ magnétique s’écrit § = By cos( e—;.
a

sin(wt) Déduire de I'application d’'une équation de

Maxwell bien choisie, I’expression du champ électrique associé.
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Réponses: 1- B=_2 cos(wt + kz)e, et R = —5 0 cos?(wt+ kz)ep 2- E= %0
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II. Onde émise par un laser

Un laser émet un faisceau cylindrique de diametre d = 1 e¢m de puissance P = 10 W. On donne ¢y =
8,85.10712 Fom™1t,

1. Utiliser les données pour calculer 'intensité moyenne du faisceau.

2. On suppose que l'onde émise peut s’écrire sous la forme d’'une OPPH se propageant selon Oz, po-
larisée selon Oy et d’amplitude Ey. Proposer une expression pour le champ électrique, en déduire le champ
magnétique et la valeur moyenne du vecteur de Poynting.

3. En déduire les amplitudes des champs électrique et magnétique émis par le laser.

Réponses: < ||ﬁ|| >=1,28.10° W/m™2, Ey = 13 kV.m ™!
ITI. Onde électromagnétique dans le vide

On considere une onde électromagnétique se propageant dans le vide caractérisée par son champ électrique:

= Eysin(By) cos(wt — ax)es.

1. Caractériser I'onde électromagnétique.

2. Rappeler I'équation de propagation du champ électrique et en déduire la relation de dispersion liant les
parametres «, 8, w et c.

3. Exprimer le champ magnétique associé a cette onde.
4. Exprimer la valeur moyenne du vecteur de Poynting et conclure.
5. Décomposer 'onde précédente en deux OPPH dont on précisera les caractéristiques (on donne: 2sinacosb =

sin(a + b) + sin(a — b)).

2 E
Réponses: 2- % +a? = i—z 3-B = UO(—ﬁ cos(By) sin(wt — ax)e, — asin(By) cos(wt — ax)ey) 4- < R >=
E? =
%oz sin2([3y)ac> 5- k' = aeg + ﬁe_; et 17 = ae; — ﬂaj
w

IV. Confinement des ondes em dans un four (CCINP TPC 2020)

L’intérieur du four est assimilable au vide. Les faces iz

du four sont modélisées par des plans métalliques. Métal Vide Métal
On souhaite déterminer l'expression du champ B I
électromagnétique présent entre les deux plans x=0 x=dy
conducteurs distants de d. En représentation

cartésienne, on cherche le champ électrique de I'onde
sous la forme : E(M,) = By cos(kx + ¢) cos(wt)es.

On suppose que le champ électrique est nul dans le métal.



1. Donner 4 qualificatifs permettant de caractériser cette onde.

2. On admet que la composante tangentielle du champ électrique est continue a l'interface vide-métal, en
x =0 et z = d. En déduire les valeurs de ¢ et de k. On choisira pour ¢ la plus petite valeur positive possible
et on exprimera k et w notamment en fonction d’un entier naturel n.

3. Exprimer le champ magnétique et la valeur moyenne du vecteur de Poynting. Commenter.

4. Représenter allure des ondes électrique et magnétique pour le fondamental et pour le premier har-
monique dans la cavité. Citer, dans d’autres domaines de la physique, deux exemples avec lesquels une
analogie pourrait étre menée.

E
Réponses: 2- k, = nL_w 3-B=20 cos(kx) sin(wt)e; .
c

V. Réflexion d’une onde sur un métal
(E3A PC 2025)

On travaille dans une base cartésienne (5, ¢,,e2).

Une onde électromagnétique plane, progressive, har-
monique, polarisée rectilignement, se propage dans le
vide dans le sens des z croissants. On note FE;(z,t)
le champ électrique et B;(x,t) le champ magnétique
associés a cette onde.
E e et B,

On pose E;(z,t) = Epcos(wt — kx)e;, et Bi(z,t) =
By cos(wt — kx)e; avec w la pulsation et k la norme
du vecteur d’onde. x<0 |~ x>0

1. Rappeler la relation entre les amplitudes Ey et By des champs électrique et magnétique.

Un conducteur ohmique immobile occupe ’espace = > 0. L’onde arrive sous incidence normale depuis les
x < 0 et donne naissance a une onde réfléchie dans le vide et a une onde transmise dans le conducteur. La

réflexion s’effectue en = 0 sur un bon réflecteur avec un déphasage de m pour le champ électrique et pas

de déphasage pour le champ magnétique. On a donc : E,.(z,t) = —FEy cos(wt + ka:)e—;

_)
2. En déduire B, (z,t).
—— -
3. Déterminer expression de l'onde électromagnétique résultante, E,;qc(z,t) et Byige(x,t) dans le demi-
espace x < 0.

L’onde transmise a sa partie électrique quasiment nulle. La partie magnétique de 'onde transmise dans le
conducteur est de la forme Bj(z = 0,t) = 2By cos(wt)es et By(z — oo,t) = 0.

4. Citer I’équation locale de Maxwell Ampere. On se place dans 'ARQS magnétique. Simplifier alors
I’équation de Maxwell Ampere. Justifier alors qu’une tranche de conducteur de surface dxdzaj est traversée

par le courant infinitésimal di = —— ——dzdz.

5. Déterminer la force de Laplace qui s’exerce sur 1’élément de longueur EZ = dla; parcouru par le courant
H
di et plongé dans le champ magnétique B;(x,t).

6. Montrer que la force totale qui s’exerce sur un pavé de conducteur de section d’aire dydz et de longueur
2

B,
infinie s’écrit cﬁ pave = 29 cos2(wt)dzdye_z>. Calculer alors la valeur moyenne temporelle de cette force
0

< AP pave >

Cette force est normale a la surface et est proportionnelle a 1’élément de surface dydz, elle correspond
donc a une pression. Elle vérifie < dFpque >= pmddydzac> ol prqq est la pression de radiation que l'onde
électromagnétique exerce sur le conducteur.

7. Déterminer 'expression de la pression de radiation.

8. Justifier la relation entre la pression de radiation et la moyenne temporelle de la densité d’énergie
électromagnétique de 'onde dans le vide proposée par Maxwell.

La notion de pression de radiation est tres intuitive lorsque 1’on associe des photons a ’onde électromagnétique.
Un photon de fréquence v arrive sous incidence normale sur une surface réfléchissante. Lorsqu’il frappe la
surface, il rebondit sans perte d’énergie dans la direction définie par les lois de Snell-Descartes.



9. Rappeler I'expression de la quantité de mouvement d’un photon. Déterminer la variation de la quantité de
mouvement d’un photon frappant la surface parfaitement réfléchissante en incidence normale. On considere
maintenant un gaz de photons incidents de densité volumique n.

10. Déterminer le nombre de photons frappant la surface S pendant la durée At. A I'aide de la question
précédente et de la deuxieme loi de Newton, retrouver la force totale exercée par I’ensemble des photons
incidents sur une section S de la surface réfléchissante pendant la durée At. Donner alors I’expression de la
pression de radiation exercée par les photons sur la surface réfléchissante.

11. Retrouver alors le lien entre la pression de radiation et la densité d’énergie des photons présents dans
le vide (photons incidents et photons réfléchis) décrit par Maxwell.

On considere un faisceau de photons arrivant avec une incidence 6 sur une surface réfléchissante. Reprendre
le raisonnement des questions 8 et 9 et montrer que ’expression de la pression de radiation dépend de I'angle
d’incidence comme p,q.q = 2nhv cos? 0.

= E - dyd
Réponses: 2- B,.(z,t) = — cos(wi+kx)e} 3- Eyigo(,t) = 2B, € (kz) sin(wt)e, 5- d?p,we e ZQBS cos? (wt)eq
c Ho
B? 2h
7- Drad = M_O =< Uem > & A? = —Tye—; 9- Praq = 2nhv
0



