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Stockage électromécanique de l’électricité

Partie I - Demande d’électricité en France

En 2050, l’électricité pourrait représenter environ un tiers de l’énergie consommée au total. Les
réseaux de transmission et de distribution de cette énergie sont donc cruciaux ; on constate une
inquiétude croissante sur la sécurité de l’approvisionnement en électricité dans un contexte de
changement climatique. L’électricité ayant pour particularité de ne pas pouvoir être stockée en
grande quantité de façon économique pour l’instant, la quantité d’électricité produite et injectée
dans le réseau doit être égale à tout moment à la quantité d’électricité consommée.

La modélisation de la consommation journalière d’électricité en France peut être utile pour pré-
voir la demande suivant le temps et adapter la production à la demande. Cette question est
majeure à notre époque. La consommation journalière d’électricité en France est dépendante
de la variable temps. Le graphique de la figure 1 représente la consommation d’une journée
type en fonction de l’heure. Nous ne nous intéresserons pas à la méthode expérimentale d’ob-
tention de cette courbe mais à une modélisation possible par une fonction polynomiale de la
fonction f consommation journalière d’électricité en France.

Plusieurs méthodes d’approximation dans cette partie vont être proposées pour répondre à
cette problématique. Les parties sont indépendantes et peuvent être traitées dans l’ordre de
choix du candidat.

Heures

MW

Figure 1 - Exemple de l’évolution de la consommation journalière d’électricité en France
[source ADEME]

On note f la fonction de la consommation journalière en France en fonction du temps x en
heure. On supposera que f est une fonction continue sur [0 ; 24].
Q1. On se propose de considérer une fonction g définie sur [0 ; 24] par :

g(x) = −0,02 x3 + 0,72 x2 − 5,27 x + 45.

Montrer que g(0) = 45.

Q2. Justifier que la fonction g est dérivable sur ]0 ; 24[ et admet pour dérivée :

g′(x) = −0,06 x2 + 1,44 x − 5,27.

Q3. Donner les variations de g (on donnera des valeurs approchées des valeurs où g change
de variations) et comparer au graphique de la figure 1.
On pourra utiliser que : 1,442 − 4 × 5,27 × 0,06 = 0,8088.
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Une telle fonction n’est évidemment pas satisfaisante. Une meilleure idée est l’interpolation
polynomiale de Lagrange. Celle-ci contraint les valeurs du polynôme à coïncider avec celles
de la fonction en un nombre fini de points.

Soient n ∈ ℕ∗ et des réels a0, a1, … , an deux à deux distincts appartenant à l’intervalle [0; 24].
Pour tout entier i appartenant à ⟦0 ; n⟧, on appelle i-ème polynôme interpolateur de Lagrange,
le polynôme :

Li(X) =
n

∏
j=0
j≠i

X − aj
ai − aj

.

Q4. Dans cette question uniquement, on se restreint à n = 1 avec a0 = 3 et a1 = 13.
Écrire les polynômes de Lagrange.

Q5. Soit i un entier fixé appartenant à ⟦0 ; n⟧.
Montrer que le polynôme Li est de degré n.

Q6. Soient i et k deux entiers fixés dans ⟦0 ; n⟧ avec i ≠ k.
Montrer que Li(ai) = 1 et Li(ak) = 0.

Q7. Montrer que la famille formée par les polynômes Li avec i appartenant à ⟦0; n⟧ forme
une base de l’ensemble ℝn[X] des polynômes à coefficients réels de degré inférieur ou
égal à n.

Q8. En déduire que :

Q =
n

∑
i=0

f(ai)Li

est l’unique polynôme de ℝn[X], tel que pour tout k dans ⟦0 ; n⟧, Q(ak) = f(ak).

Q9. Écrire en langage Python une fonction lagrange(i,A,x) qui prend comme arguments
un entier i, une liste de flottants A correspondant à la séquence [a0, a1, … , an], un flottant
x et qui renvoie le flottant correspondant à Li(x).

L’interpolation a ses limites, notamment en termes de convergence, notion que nous n’abor-
derons pas dans le problème présent. Pour simplifier les calculs, nous nous placerons sur
l’intervalle [0 ; 1] et non plus [0 ; 24].
Une deuxième possibilité est de considérer une distance et de chercher un polynôme P de
degré au plus n tel que la distance à la fonction donnée f soit minimale. On souhaite réali-
ser une approximation au sens des moindres carrés, on choisit donc la distance en moyenne
quadratique dont le carré est :

d(f,P)2 = ∫
1

0
|P(x) − f(x)|2dx.

Soient f et g, deux fonctions continues sur [0 ; 1] et à valeurs dans ℝ. On note :

⟨f,g⟩ = ∫
1

0
f(x)g(x)dx.

Q10. Montrer que ⟨., .⟩ définit un produit scalaire sur l’ensemble des fonctions continues sur
[0 ; 1] à valeurs dans ℝ.
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Soit n un entier non nul fixé.
On cherche un polynôme P à coefficients réels et de degré inférieur ou égal à n, tel que :

∀Q ∈ ℝn[X], ∫
1

0
|P(x) − f(x)|2dx ≤ ∫

1

0
|Q(x) − f(x)|2dx. (1)

Nous allons supposer dans un premier temps qu’un tel polynôme P existe.
On pose Q = P + tR avec t un réel et R un polynôme de ℝn[X].
Q11. Expliquer pourquoi l’inéquation (1) est équivalente à l’inéquation suivante :

⟨f − P, f − P⟩ ⩽ ⟨f − P − tR, f − P − tR⟩. (2)

Q12. En déduire que :
t2⟨R,R⟩ − 2t⟨f − P,R⟩ ⩾ 0.

Q13. En faisant tendre t vers 0 par valeur positive, montrer que :

⟨f − P,R⟩ ⩽ 0.

Q14. En faisant tendre t vers 0 par valeur négative, montrer que :

⟨f − P,R⟩ ⩾ 0.

Q15. En déduire que ∀R ∈ ℝn[X], ⟨f − P,R⟩ = 0.

Q16. En déduire que si P existe, alors P est unique.

Ce polynôme, s’il existe, est appelé approximation de f au sens des moindres carrés. Nous

allons chercher à construire un tel polynôme P en considérant P(X) =
n

∑
j=0

aj X j, avec pour tout

entier j appartenant à ⟦0 ; n⟧, aj un réel.

Q17. Montrer à l’aide de la question Q15 que les coefficients aj pour 0 ⩽ j ⩽ n vérifient pour
0 ⩽ k ⩽ n :

n
∑
j=0

aj ∫
1

0
x j+k dx = ∫

1

0
xk f(x)dx.

Q18. En déduire que la matrice du système linéaire d’inconnue associée au n + 1 uplet
(a0, a1, … , an) précédent est :

Hn+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
2

1
3

… 1
n + 1

1
2

1
3

1
4

… 1
n + 2

1
3

1
4

1
5

… 1
n + 3

⋮ ⋮ ⋮ ⋮
1

n + 1
1

n + 2
1

n + 3
… 1

2n + 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Q19. Justifier que la matrice Hn+1 est diagonalisable.
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Q20. On admet que 0 n’est pas une valeur propre de la matrice Hn+1. En déduire qu’il existe
un polynôme P de degré k ≤ n vérifiant l’égalité établie à la question Q17.

La résolution de ce système est un problème potentiellement difficile, cependant, l’approxima-
tion au sens des moindres carrés est de pratique courante.

Partie II - Stockage électromécanique

Une des solutions possibles pour maintenir l’équilibre consommation-production électrique est
de stocker l’énergie du réseau lors des pics de production afin de la restituer lorsque la de-
mande augmente sur une journée. Il existe plusieurs types de stockage, on pourra citer entre
autres :

- le stockage électrochimique par batteries ;
- les systèmes de transfert d’énergie par pompage (STEP) ;
- le stockage électromécanique ou inertiel.

Le stockage inertiel de l’énergie est une solution intéressante, en particulier dans les dispositifs
de production à faible et moyenne puissance. Le stockage inertiel se distingue par sa grande
capacité au cyclage (possibilité de 106 cycles de charge/décharge) se traduisant ainsi par
une durée de vie élevée et donc un coût de fonctionnement relativement faible par rapport au
stockage par batteries ou aux STEP.

On peut également mentionner un contrôle
aisé de la charge et de la décharge, une
bonne connaissance de l’état de charge
(image de la vitesse de rotation), et enfin,
un recyclage en fin de vie pouvant être peu
coûteux économiquement et énergétique-
ment.

Le stockage inertiel utilise le plus souvent
des volants d’inertie mis en rotation de
façon à stocker l’énergie électrique sous
forme d’énergie cinétique. Dans cette op-
tique, des centrales inertielles constituées
de plusieurs centaines de volants d’inertie
ont été développées (figure 2).

Figure 2 - Centrale inertielle de 20 MW, 2011,
New-York, © Beacon Power.

II.1 - Moment d’inertie

On veut pouvoir stocker 3,0 kWh par volant d’inertie, ce qui représente une énergie de 1,0 ⋅ 107 J.

Le principe du volant d’inertie consiste à faire tourner un solide 1 dans une enceinte de confi-
nement liée au bâti 0. On note ℛ0 = (O, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗x0, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗y0, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗z0) le repère associé à 0 et on supposera le
référentiel associé galiléen. Le solide 1 est un cylindre plein et homogène et on donne :

- hauteur H, rayon R ;
- masse m ;
- centre d’inertie G sur son axe de rotation (O, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗z0) ;
- moment d’inertie J1 autour de l’axe (O, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗z0).

On note ⃗⃗ ⃗⃗ ⃗⃗Ω1/0 = ω ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗z0 le vecteur rotation du cylindre 1 autour d’un axe fixe (figure 3).
Q21. Exprimer l’énergie cinétique Ec d’un tel dispositif en fonction de J1 et de ω.
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Figure 1. Principaux composants d'un accumulateur inertiele 
batterie électromécanique 

2.1. Elément de stockage : volant d’inertie 

Le type de matériau constituant le volant et sa forme 
caractérisent en grande partie les capacités énergétiques 
théoriques de la partie active de l’accumulateur. 
L’énergie  stockée dans un volant en rotation s’exprime 
sous la forme : 

∫∫∫=Ω=
v

c dmVJW 22

2
1.

2
1  (1) 

où J est le moment d’inertie des parties tournantes, ΩΩ la 
vitesse de rotation et V la vitesse tangentielle de 
l’élément tournant dm. 
 
A titre d’exemple, le tableau suivant indique les moments 
d’inertie de quelques cas élémentaires. 

Système élémentaire Moment d’inertie 
Masse m ponctuelle 2mR  
Cylindre plein de masse M 2

2
1 MR  

Cylindre creux de masse M ( )2
2

2
12

1
RRM +  

Barre de section rectangulaire de 
masse M et de longueur L 
tournant autour de son centre de 
gravité 

2

12
1

ML  

Tableau 1.  Moment d’inertie de quelques géométries 

L’augmentation de l’énergie cinétique stockée nécessite 
donc à la fois de disposer d’un moment d’inertie élevé et 
d’une vitesse de rotation ΩΩ importante. Cependant, en se 
limitant au volant, ce n’est pas la vitesse de rotation qui 
présente une limite mais la vitesse périphérique Vp=ΩΩ.Rr 
où Rr est le rayon du volant. 
Ainsi, l’énergie stockée dépend directement de la vitesse 
maximale périphérique VpMax admise par les parties 
tournantes compte tenu de leur résistance mécanique à la 
traction en limite élastique (Re), de leur masse volumique 
(ρρ) et de leur forme (relation 2). Pour ce dernier 
paramètre, on définit un coefficient de vitesse kv, lié au 
coefficient de concentration de contraintes dans le volant 
et dépendant donc directement de sa géométrie. 

ρ
e

vpMax
R

kV =      (2) 

Pour une forme cylindrique simple de rayon extérieure 
Rex et un rayon intérieur Rin, on montre que : 

⎪
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où αα=Rin/Rex et υ   correspond au coefficient de Poisson. 
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Figure 2. Variation du coefficient de vitesse en fonction du 
rapport des rayons dans le cas d’un cylindre et pour υ =0.3   
 
La limite élastique est définie pour un matériau donné 
comme étant la densité de force de traction maximale 
admise sans effet d’allongement irréversible comme 
schématisé par la figure 3. Le tableau 2 donne des 
exemples de caractéristiques intrinsèques de quelques 
matériaux. 

 
Figure 3. Définition de la limite élastique 

 
Matériaux Re  

(Mpa) 
ρ (SI) Re/ρ 

(Wh/kg) 
Re 

(Wh/litres) 
35NiCrMo16 880 7800 31 244 
Maraging 300 1950 7800 69 542 

TA6V 870 7800 55 241 
10-2-3 1228 4420 77 341 
2017A 280 2790 28 78 
7049A 570 2800 57 158 

Vezrre R /époxy 1655 2080 221 460 
Carbone R/époxy 1380 1520 250 383 
Aramide/époxy 1400 1370 284 388 

Tableau 2a. Exemple de caractéristiques intrinsèques de 
quelques matériaux  

Ainsi, pour un cylindre creux mince (kv≈≈1), les vitesses 
périphériques maximales admissibles varient en théorie 
entre 330 m/s pour un volant métallique (acier 
35NiCrMo16, Re=880 MPa et ρρ=7800 kg/m3) à 1000 m/s 
pour un volant composite (Aramide/époxy, Re =1400 

et de secours

Commande

DC

AC

et de sécurité

U

P

−!z

O

Cylindre 1

Paliers principaux

Moteur/Générateur

Enceinte de confinement

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗z0

O

Enceinte de confinement
et de sécurité 0

Cylindre 1

Moteur/Générateur

Paliers principaux
et de secours

Commande

Figure 3 - Principaux composants d’un accumulateur inertiel
Afin d’optimiser le fonctionnement du volant d’inertie, on souhaite maintenir une vitesse angu-
laire minimale ωmin. De plus, pour résister aux contraintes mécaniques liées à la rotation du
volant, on définit également une vitesse angulaire maximale ωmax.

Un cycle classique d’utilisation prendra l’allure suivante :

ωmin
temps

ωmax
Charge Stockage Décharge

Énergie cinétique
absorbée

Énergie cinétique
restituée

Figure 4 - Principe du cycle de récupération d’énergie cinétique
L’énergie cinétique employable correspond donc à la différence d’énergie entre les situations
de vitesses angulaires maximale et minimale.

Q22. Pour des vitesses de rotation Nmin = 30 000 tr/min et Nmax = 40 000 tr/min, exprimer
la valeur du moment d’inertie J1 nécessaire afin de disposer des 3,0 kW⋅h demandés.
Réaliser l’application numérique.

Le dispositif pouvant présenter des pertes (cas étudié en sous-partie II.2), on prendra une
marge de sécurité avec une valeur de J1 de 3,0 kg⋅m2. La forme du volant d’inertie est imposée :
il s’agit d’un cylindre plein et homogène de masse m, de hauteur H et de rayon R.

Q23. Exprimer la massem du cylindre en fonction de sa masse volumique ρ, ainsi que de ses
dimensions H et R.

Le moment d’inertie d’un cylindre autour de son axe de révolution (O, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗z0) est donné par la
relation :

J1 = πρHR4

2
.

Q24. Montrer que :

J1 = mR2

2
.

En déduire la valeur du rayon R permettant d’obtenir un cylindre de 300 kg.
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L’augmentation de l’énergie cinétique stockée nécessite 
donc à la fois de disposer d’un moment d’inertie élevé et 
d’une vitesse de rotation ΩΩ importante. Cependant, en se 
limitant au volant, ce n’est pas la vitesse de rotation qui 
présente une limite mais la vitesse périphérique Vp=ΩΩ.Rr 
où Rr est le rayon du volant. 
Ainsi, l’énergie stockée dépend directement de la vitesse 
maximale périphérique VpMax admise par les parties 
tournantes compte tenu de leur résistance mécanique à la 
traction en limite élastique (Re), de leur masse volumique 
(ρρ) et de leur forme (relation 2). Pour ce dernier 
paramètre, on définit un coefficient de vitesse kv, lié au 
coefficient de concentration de contraintes dans le volant 
et dépendant donc directement de sa géométrie. 

ρ
e

vpMax
R

kV =      (2) 

Pour une forme cylindrique simple de rayon extérieure 
Rex et un rayon intérieur Rin, on montre que : 
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où αα=Rin/Rex et υ   correspond au coefficient de Poisson. 
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Figure 2. Variation du coefficient de vitesse en fonction du 
rapport des rayons dans le cas d’un cylindre et pour υ =0.3   
 
La limite élastique est définie pour un matériau donné 
comme étant la densité de force de traction maximale 
admise sans effet d’allongement irréversible comme 
schématisé par la figure 3. Le tableau 2 donne des 
exemples de caractéristiques intrinsèques de quelques 
matériaux. 

 
Figure 3. Définition de la limite élastique 

 
Matériaux Re  

(Mpa) 
ρ (SI) Re/ρ 

(Wh/kg) 
Re 

(Wh/litres) 
35NiCrMo16 880 7800 31 244 
Maraging 300 1950 7800 69 542 

TA6V 870 7800 55 241 
10-2-3 1228 4420 77 341 
2017A 280 2790 28 78 
7049A 570 2800 57 158 

Vezrre R /époxy 1655 2080 221 460 
Carbone R/époxy 1380 1520 250 383 
Aramide/époxy 1400 1370 284 388 

Tableau 2a. Exemple de caractéristiques intrinsèques de 
quelques matériaux  

Ainsi, pour un cylindre creux mince (kv≈≈1), les vitesses 
périphériques maximales admissibles varient en théorie 
entre 330 m/s pour un volant métallique (acier 
35NiCrMo16, Re=880 MPa et ρρ=7800 kg/m3) à 1000 m/s 
pour un volant composite (Aramide/époxy, Re =1400 
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Figure 3 - Principaux composants d’un accumulateur inertiel
Afin d’optimiser le fonctionnement du volant d’inertie, on souhaite maintenir une vitesse angu-
laire minimale ωmin. De plus, pour résister aux contraintes mécaniques liées à la rotation du
volant, on définit également une vitesse angulaire maximale ωmax.

Un cycle classique d’utilisation prendra l’allure suivante :

ωmin
temps

ωmax
Charge Stockage Décharge

Énergie cinétique
absorbée

Énergie cinétique
restituée

Figure 4 - Principe du cycle de récupération d’énergie cinétique
L’énergie cinétique employable correspond donc à la différence d’énergie entre les situations
de vitesses angulaires maximale et minimale.

Q22. Pour des vitesses de rotation Nmin = 30 000 tr/min et Nmax = 40 000 tr/min, exprimer
la valeur du moment d’inertie J1 nécessaire afin de disposer des 3,0 kW⋅h demandés.
Réaliser l’application numérique.

Le dispositif pouvant présenter des pertes (cas étudié en sous-partie II.2), on prendra une
marge de sécurité avec une valeur de J1 de 3,0 kg⋅m2. La forme du volant d’inertie est imposée :
il s’agit d’un cylindre plein et homogène de masse m, de hauteur H et de rayon R.

Q23. Exprimer la massem du cylindre en fonction de sa masse volumique ρ, ainsi que de ses
dimensions H et R.

Le moment d’inertie d’un cylindre autour de son axe de révolution (O, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗z0) est donné par la
relation :

J1 = πρHR4

2
.

Q24. Montrer que :

J1 = mR2

2
.

En déduire la valeur du rayon R permettant d’obtenir un cylindre de 300 kg.
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II.2 - Auto-décharge

Après une phase de charge, le volant d’inertie doit conserver son énergie cinétique jusqu’à
la phase de décharge. Durant cette phase de stockage, différentes pertes dans le méca-
nisme peuvent dissiper une partie de l’énergie emmagasinée et induire un phénomène d’auto-
décharge (figure 5).

ωmin
temps

ωmax
Charge Stockage Décharge

Énergie cinétique
absorbée

Auto-décharge

Énergie cinétique
restituée

Figure 5 - Principe du cycle de récupération d’énergie cinétique avec prise en compte des
pertes
Pour limiter ces pertes, on envisage d’abord un guidage par roulements pour réaliser la liaison
pivot d’axe (O, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗z0) entre le cylindre 1 et le bâti 0.

On a toujours ⃗⃗ ⃗⃗ ⃗⃗Ω1/0 = ω ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗z0 le vecteur rotation du cy-
lindre 1 par rapport au bâti 0.
On rappelle le paramétrage du cylindre 1 :

- hauteur H ;
- rayon R ;
- masse m ;
- centre d’inertieG sur son axe de rotation (O, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗z0) ;
- moment d’inertie J1 autour de l’axe (O, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗z0).

G⇥

−!z
Cylindre 1

Bâti 0

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗z0Cylindre 1

Bâti 0

G

Figure 6 - Schéma cinématique sim-
plifié du système

Un couple résistant Cres ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗z0 modélise les frottements visqueux et secs qui s’appliquent sur le
cylindre 1, tel que Cres ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗z0 = −(Cs +Cv) ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗z0. On note alors Cs le couple résistant constant lié au
frottement sec et Cv = μ ⋅ω le couple résistant lié au frottement visqueux où μ est le coefficient
de frottement visqueux en N⋅m/(rad/s) supposé constant.

Q25. Identifier qualitativement les éléments mécaniques et phénomènes physiques pouvant
être à l’origine de ces différents frottements.

Q26. Préciser le(s) solide(s) isolé(s) et la démarche employée afin de montrer que :

J1
dω
dt

+ μ ⋅ ω = −Cs. (3)

La fonction ω de variable t est dérivable sur ℝ.
Q27. Résoudre l’équation différentielle (3) lorsqueCs est une constante réelle et pour la condi-

tion initiale ω(0) = ωmax.

Q28. Exprimer la durée Δt pour que le système s’autodécharge jusqu’à ωmin.

On trouve alors Δt ≃ 1 ⋅ 104 s.

Q29. Exprimer la durée d’autodécharge en heure et conclure.
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Partie III - Contrôle des paliers magnétiques
Afin de remplacer les roulements et de permettre au volant d’inertie de fonctionner dans une
enceinte sous vide, on propose d’utiliser une suspension magnétique axiale. On suppose que
des paliers radiaux permettent de maintenir le centrage du volant d’inertie sur son axe de
rotation. Il devient nécessaire de contrôler la position axiale du volant suspendu selon ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗z0, notée
z(t).
Dans cette configuration, on considérera uniquement les actions de la pesanteur ⃗⃗⃗F⃗pes→1 et du
palier magnétique axial ⃗⃗⃗F⃗a→1 sur le volant 1. On définit :

- le champs de pesanteur g⃗ = −g ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗z0 ;
- la force ⃗⃗⃗F⃗a→1 = (ki i(t) + ka z(t)) ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗z0 où i(t) est le courant circulant dans le bobinage du
palier magnétique et, ki en N⋅A−1 et ka en N⋅m−1, deux constantes positives.

On cherche maintenant à déterminer comment piloter le palier magnétique afin de maintenir
une position d’équilibre entre le volant d’inertie 1 et le bâti 0.

G⇥

−!
F pes!1

−!
F a!1

−!z

z(t)
Cylindre 1

Paliers Magnétiques
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗z0

⃗⃗⃗F⃗pes→1

G

⃗⃗⃗F⃗a→1 Paliers magnétiques + bâti 0

Cylindre 1
z(t)

Figure 7 - Modèle du système avec paliers magnétiques

Q30. Réaliser le bilan des actions extérieures s’appliquant à 1 et montrer par une étude dy-
namique, en prenant soin de détailler la démarche, que :

z̈(t) = −g + ki
mi(t) + ka

m z(t). (4)

On note zeq la position d’équilibre du volant d’inertie par rapport au bâti.

Q31. Établir l’expression du courant ieq associée à la position d’équilibre zeq en fonction de
m, g, ki, ka et de zeq.

On pose Δi(t) = i(t) − ieq et Δz(t) = z(t) − zeq.

Q32. En déduire une relation entre Δz(t) et Δi(t), puis montrer que l’on obtient dans le domaine
de Laplace, pour des conditions initiales nulles, la fonction de transfert suivante :

ΔZ(p)
ΔI(p) = − ki

ka
⋅ 1

1 − m
ka
p2

(5)

avec ΔI(p) et ΔZ(p), respectivement, les transformées de Laplace de Δi(t) et Δz(t).
La fonction de transfert (5) permet de traduire le comportement du palier magnétique axial, soit
la variation de distance Δz(t) associée à la variation de courant Δi(t).
Q33. Montrer que le comportement du palier magnétique est intrinsèquement instable.

Q34. Proposer une démarche (sans calcul) afin de corriger ce problème. Illustrer la proposition
par un schéma-bloc.

FIN
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