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Durée : 3 heures

N.B. : le candidat attachera la plus grande importance a la clarté, a la précision et a la concision de la rédaction.
Si un candidat est amené a repérer ce qui peut lui sembler étre une erreur d’énoncé, il le signalera sur sa copie
et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené a prendre.

RAPPEL DES CONSIGNES

o Utiliser uniquement un stylo noir ou bleu foncé non effagable pour la rédaction de votre composition ; d’autres
couleurs, excepté le vert, bleu clair ou turquoise, peuvent étre utilisées, mais exclusivement pour les schémas
et la mise en évidence des résultats.

o Ne pas utiliser de correcteur.

« Ecrire le mot FIN & la fin de votre composition.

Les calculatrices sont interdites.

Le sujet est composé de trois parties indépendantes.
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Stockage électromécanique de I’électricité

Partie | - Demande d’électricité en France

En 2050, I'électricité pourrait représenter environ un tiers de I'énergie consommeée au total. Les
réseaux de transmission et de distribution de cette énergie sont donc cruciaux; on constate une
inquiétude croissante sur la sécurité de I'approvisionnement en électricité dans un contexte de
changement climatique. L’électricité ayant pour particularité de ne pas pouvoir étre stockée en
grande quantité de fagcon économique pour l'instant, la quantité d’électricité produite et injectée
dans le réseau doit étre égale a tout moment a la quantité d’électricité consommée.

La modélisation de la consommation journaliere d’électricité en France peut étre utile pour pré-
voir la demande suivant le temps et adapter la production a la demande. Cette question est
majeure a notre époque. La consommation journaliére d’électricité en France est dépendante
de la variable temps. Le graphique de la figure 1 représente la consommation d’'une journée
type en fonction de I'heure. Nous ne nous intéresserons pas a la méthode expérimentale d’ob-
tention de cette courbe mais a une modélisation possible par une fonction polynomiale de la
fonction f consommation journaliére d’électricité en France.

Plusieurs méthodes d’approximation dans cette partie vont étre proposées pour répondre a
cette problématique. Les parties sont indépendantes et peuvent étre traitées dans l'ordre de
choix du candidat.
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Figure 1 - Exemple de I'évolution de la consommation journaliére d’électricité en France
[source ADEME]

On note f la fonction de la consommation journaliére en France en fonction du temps x en
heure. On supposera que f est une fonction continue sur [0; 24].

Q1. On se propose de considérer une fonction g définie sur [0 ; 24] par :
g(x) = —0,02x3 + 0,72 x% — 527 x + 45,
Montrer que g(0) = 45.
Q2. Justifier que la fonction g est dérivable sur 10 ; 24[ et admet pour dérivée :

g'(x)=—006x2+144x—527.

Q3. Donner les variations de g (on donnera des valeurs approchées des valeurs ou g change
de variations) et comparer au graphique de la figure 1.
On pourra utiliser que : 1,442 — 4 x 527 x 0,06 = 0,8088.
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Une telle fonction n’est évidemment pas satisfaisante. Une meilleure idée est I'interpolation
polynomiale de Lagrange. Celle-ci contraint les valeurs du polyndme a coincider avec celles
de la fonction en un nombre fini de points.

Soient n € IN" et des réels ag, aq, ..., a, deux a deux distincts appartenant a l'intervalle [0; 24].
Pour tout entier /i appartenant a [0 ; n], on appelle i-eme polynéme interpolateur de Lagrange,
le polyndme :

nX-— a;
LI(X) = ]_la. —a
=071

J=i

Q4. Dans cette question uniquement, on se restreinta n =1 avec ag = 3 etay = 13.
Ecrire les polynbmes de Lagrange.

Q5. Soitiun entier fixé appartenant a [0 ; n].
Montrer que le polyndbme L; est de degré n.

Q6. Soient et k deux entiers fixés dans [0; n]| avec i = k.
Montrer que Lj(a;) = 1 et Lj(ax) = 0.

Q7. Montrer que la famille formée par les polyndbmes L; avec i appartenant a [[0; n]] forme
une base de I'ensemble R,[X] des polyndmes a coefficients réels de degré inférieur ou
égal a n.
Q8. En déduire que :
n
Q= > f@)L
i=0
est 'unique polyndme de R,[X], tel que pour tout k dans [[0; n]l, Q(ax) = f(ay).

Q9. Ecrire enlangage Python une fonction lagrange (i, A, x) qui prend comme arguments
un entier i, une liste de flottants A correspondant a la séquence [a, a4, ..., a,], un flottant
x et qui renvoie le flottant correspondant a L;(x).

L'interpolation a ses limites, notamment en termes de convergence, notion que nous n’abor-
derons pas dans le probléme présent. Pour simplifier les calculs, nous nous placerons sur
I'intervalle [0 ; 1] et non plus [0; 24].

Une deuxieme possibilité est de considérer une distance et de chercher un polynéme P de
degré au plus n tel que la distance a la fonction donnée f soit minimale. On souhaite réali-
ser une approximation au sens des moindres carrés, on choisit donc la distance en moyenne
quadratique dont le carré est :

1
d(f P)2 = / IP(x) — f(x)[%dx.
0
Soient f et g, deux fonctions continues sur [0 ; 1] et a valeurs dans R. On note :
1
(rg)= | fo0g0qax

Q10. Montrer que {.,.) définit un produit scalaire sur 'ensemble des fonctions continues sur
[0:1] a valeurs dans R.
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Soit n un entier non nul fixé.
On cherche un polynéme P a coefficients réels et de degré inférieur ou égal a n, tel que :

1 1
vQ € Ry[X] /0 IP(x) — o0 Pdx < /0 Q) — f[2dx (1)

Nous allons supposer dans un premier temps qu’un tel polynéme P existe.
On pose Q = P + tR avec t un réel et R un polynéme de R,[X].

Q11. Expliquer pourquoi I'inéquation (1) est équivalente a I'inéquation suivante :

(f—P.f—P)y< (f—P—tRf—P—t(R). 2)

Q12. En déduire que :
(R R) — 2t{f— P,R) = 0.

Q13. En faisant tendre t vers 0 par valeur positive, montrer que :

(f—P.R) < 0.

Q14. En faisant tendre t vers 0 par valeur négative, montrer que :

(f—P.R) > 0.

Q15. En déduire que VR € R,[X], (f— P,R) =0.

Q16. En déduire que si P existe, alors P est unique.

Ce polynbme, s’il existe, est appelé approximation de f au sens des moindres carrés. Nous
n

allons chercher a construire un tel polynéme P en considérant P(X) = Zanf, avec pour tout
j=0
entier j appartenant a [0: n]], a; un réel.

Q17. Montrer a l'aide de la question Q15 que les coefficients a; pour 0 < j < n vérifient pour
0<k<n:
n 1 1
Zaj/ xf+kdx=/ xk f(x) dx.
j=0 0 0

Q18. En déduire que la matrice du systéme linéaire d’inconnue associée au n + 1 uplet
(ag, @y, ..., a,) précédent est :

;11 1
2 3 n+1

1 1 1 1
2 3 4 n+2

Hpy1 = 1 1 1 1
3 4 5 n+3

1 1 1 1
n+1 n+2 n+3 =~ 2n+1

Q19. Justifier que la matrice H,, 4 est diagonalisable.
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Q20. On admet que 0 n’est pas une valeur propre de la matrice H,, 4. En déduire qu'il existe
un polyndme P de degré k < n vérifiant I'égalité établie a la question Q17.

La résolution de ce systéme est un probleme potentiellement difficile, cependant, 'approxima-
tion au sens des moindres carrés est de pratique courante.

Partie Il - Stockage électromécanique

Une des solutions possibles pour maintenir I'équilibre consommation-production électrique est
de stocker I'énergie du réseau lors des pics de production afin de la restituer lorsque la de-
mande augmente sur une journée. |l existe plusieurs types de stockage, on pourra citer entre
autres :

- le stockage électrochimique par batteries;

- les systémes de transfert d’énergie par pompage (STEP);

- le stockage électromécanique ou inertiel.
Le stockage inertiel de I'énergie est une solution intéressante, en particulier dans les dispositifs
de production a faible et moyenne puissance. Le stockage inertiel se distingue par sa grande
capacité au cyclage (possibilit¢ de 108 cycles de charge/décharge) se traduisant ainsi par
une durée de vie élevée et donc un colt de fonctionnement relativement faible par rapport au
stockage par batteries ou aux STEP.

On peut également mentionner un contréle
aisé de la charge et de la décharge, une
bonne connaissance de l'état de charge
(image de la vitesse de rotation), et enfin,
un recyclage en fin de vie pouvant étre peu
colteux économiquement et énergétique-
ment.

Le stockage inertiel utilise le plus souvent
des volants d’inertie mis en rotation de
facon a stocker I'énergie électrique sous
forme d’énergie cinétique. Dans cette op- 4. . o .
tique, des centrales inertielles constituées gﬁ-fd@. >l e S N L
de plusieurs centaines de volants d'inertie  Figure 2 - Centrale inertielle de 20 MW, 2011,
ont été développées (figure 2). New-York, © Beacon Power.

I1.1 - Moment d’inertie

On veut pouvoir stocker 3,0 kWh par volant d’inertie, ce qui représente une énergie de 1,0 - 107 J.

Le principe du volant d’inertie consiste a faire tourner un solide 1 dans une enceinte de confi-
nement liée au bati 0. On note Ry = (O, X, Y. Zg) le repére associé a 0 et on supposera le
référentiel associé galiléen. Le solide 1 est un cylindre plein et homogene et on donne :

- hauteur H, rayon R;

- masse m;

- centre d’inertie G sur son axe de rotation (O, Zp);

- moment d’inertie J; autour de I'axe (O, Z).

On note 51/0 = wZ le vecteur rotation du cylindre 1 autour d’'un axe fixe (figure 3).

Q21. Exprimer I'énergie cinétique E, d'un tel dispositif en fonction de J; et de w.
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Figure 3 - Principaux composants d’'un accumulateur inertiel

Afin d’optimiser le fonctionnement du volant d’inertie, on souhaite maintenir une vitesse angu-
laire minimale w,,;,. De plus, pour résister aux contraintes mécaniques liées a la rotation du
volant, on définit également une vitesse angulaire maximale w,y-

Un cycle classique d’utilisation prendra I'allure suivante :

w Charge. Stockage 'Décharge
max ‘ ! )
Energie cinétique | | Energie cinétique
absorbée restituée
Wmin : :
temps

Figure 4 - Principe du cycle de récupération d’énergie cinétique

L'énergie cinétique employable correspond donc a la différence d’énergie entre les situations
de vitesses angulaires maximale et minimale.

Q22. Pour des vitesses de rotation N,,;, = 30000tr/min et Ny, = 40000 tr/min, exprimer
la valeur du moment d’'inertie J; nécessaire afin de disposer des 3,0 kW-h demandés.
Réaliser I'application numérique.

Le dispositif pouvant présenter des pertes (cas étudié en sous-partie 11.2), on prendra une
marge de sécurité avec une valeur de J4 de 3,0 kg-m?. La forme du volant d’inertie estimposée :
il s’agit d’'un cylindre plein et homogéne de masse m, de hauteur H et de rayon R.

Q23. Exprimer la masse m du cylindre en fonction de sa masse volumique p, ainsi que de ses
dimensions H et R.

Le moment d’inertie d’'un cylindre autour de son axe de révolution (O, zy) est donné par la

relation :
moHR*
Jqy = >

Q24. Montrer que :
Jy =m—.
1=M=
En déduire la valeur du rayon R permettant d’obtenir un cylindre de 300 kg.
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1.2 - Auto-décharge

Aprés une phase de charge, le volant d’inertie doit conserver son énergie cinétique jusqu’a
la phase de décharge. Durant cette phase de stockage, différentes pertes dans le méca-
nisme peuvent dissiper une partie de I'énergie emmagasinée et induire un phénomeéne d’auto-
décharge (figure 5).

w Charge: Stockage 'Décharge
max I i
. e | | Auto-décharge
Energie cinétique ‘ ‘
absorbée Energie cinétique
restituée
Wmin ‘ ‘
temps

Figure 5 - Principe du cycle de récupération d’énergie cinétique avec prise en compte des
pertes

Pour limiter ces pertes, on envisage d’abord un guidage par roulements pour réaliser la liaison
pivot d’axe (O, zg) entre le cylindre 1 et le bati 0.

On a toujours 51/0 = wZg le vecteur rotation du cy- _ Zg
lindre 1 par rapport au bati 0. Cylindre 1
On rappelle le paramétrage du cylindre 1 :
. x G

- hauteur H;

- rayon R;

- masse m; ,

Bati 0

centre d’inertie G sur son axe de rotation (O, zp);
moment d’inertie J1 autour de I'axe (O, zj).

Figure 6 - Schéma cinématique sim-
plifié du systéme

Un couple résistant C,.5 Zg modélise les frottements visqueux et secs qui s’appliquent sur le
cylindre 1, tel que C,sZg = —(Cs + C,) Zg. On note alors Cg le couple résistant constant lié au
frottement sec et C, = u- w le couple résistant lié au frottement visqueux ou y est le coefficient
de frottement visqueux en N-m/(rad/s) supposé constant.

Q25. ldentifier qualitativement les éléments mécaniques et phénoménes physiques pouvant
étre a 'origine de ces différents frottements.

Q26. Préciser le(s) solide(s) isolé(s) et la démarche employée afin de montrer que :

dw
J1E+y-w=—CS. (3)

La fonction w de variable t est dérivable sur R.

Q27. Reésoudre I'équation différentielle (3) lorsque Cg est une constante réelle et pour la condi-
tion initiale w(0) = Wy, ax-

Q28. Exprimer la durée At pour que le systéme s’autodécharge jusqu’a wp;,.

On trouve alors Af~1-10%s.

Q29. Exprimer la durée d’autodécharge en heure et conclure.
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Partie Ill - Contréle des paliers magnétiques

Afin de remplacer les roulements et de permettre au volant d’inertie de fonctionner dans une
enceinte sous vide, on propose d’utiliser une suspension magnétique axiale. On suppose que
des paliers radiaux permettent de maintenir le centrage du volant d’inertie sur son axe de
rotation. |l devient nécessaire de contréler la position axiale du volant suspendu selon zg, notée
z(b).

Dans cette configuration, on considérera uniquement les actions de la pesanteur Hlfpes_q etdu

palier magnétique axial F _,1 sur le volant 1. On définit :
- le champs de pesanteur g = —gzj;
- la force F,_q = (kji(t)+ k, z(t)) Zg ou i(t) est le courant circulant dans le bobinage du
palier magnétique et, k; en N-A~1 et k, en N-m~", deux constantes positives.
On cherche maintenant a déterminer comment piloter le palier magnétique afin de maintenir
une position d’équilibre entre le volant d’inertie 1 et le bati 0.

Fa1 l Paliers magnétiques + bati 0

[] ]
Cylindre 1 |:| I:l \——Z(t)

G

—

F

pes—1

v
Figure 7 - Modéle du systeme avec paliers magnétiques

Q30. Réaliser le bilan des actions extérieures s’appliquant a 1 et montrer par une étude dy-
namique, en prenant soin de détailler la démarche, que :

. K; . Ky
zZ(t)=—g+ E’(t) + mz(t). (4)

On note z,, la position d’équilibre du volant d’inertie par rapport au bati.

Q31. Etablir 'expression du courant leq @ssociee a la position d’équilibre z,, en fonction de
m, g, K;, ky et de z,.
On pose Ai(t) = i(f) — igq €t Az(t) = z(f) — Zgq-
Q32. Endéduire une relation entre Az(t) et Ai(f), puis montrer que I'on obtient dans le domaine
de Laplace, pour des conditions initiales nulles, la fonction de transfert suivante :
AZ(p) ki 1

Ap) "k M ®

a
avec Al(p) et AZ(p), respectivement, les transformées de Laplace de Ai(t) et Az(f).

La fonction de transfert (5) permet de traduire le comportement du palier magnétique axial, soit
la variation de distance Az(f) associée a la variation de courant Ai(t).

Q33. Montrer que le comportement du palier magnétique est intrinséquement instable.

Q34. Proposer une démarche (sans calcul) afin de corriger ce probléme. lllustrer la proposition
par un schéma-bloc.
FIN
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