
PC - Lycée Dumont D’Urville

DS 7 de physique
I. Correction: diapason (d’après E3A MP 2022)

1. Dans le référentiel d’étude supposé galiléen, la masselotte subit son poids, la réaction normale du support,
la force de rappel élastique

−→
Fr = −k(l− l0)−→ez = −kz−→ez et la force de frottements

−→
f = −λż−→ez .

La RFD projetée sur l’axe Oz donne: mz̈ = −kz − λż soit l’équation différentielle z̈ +
λ

m
ż +

k

m
z = 0.

Par identification avec l’énoncé on a ω0 =

√

k

m
et

ω0

Q
=

λ

m
soit Q =

mω0

λ
=

√
km

λ
(plus il y a de frottements

et plus le facteur de qualité est petit).

2. Pour résoudre cette équation on écrit l’équation caractéristique: r2 +
ω0

Q
r + ω2

0 = 0 et son discriminent

∆ = (
ω0

Q
)2 − 4ω2

0 < 0 car l’énoncé nous dit que l’on observe un régime pseudo-périodique.

Les solutions sont complexes et s’écrivent r± = − ω0

2Q
± j

√
−∆

2
.

D’où la solution de l’équation différentielle z(t) = e−
ω0

2Q
t(A cos(ωt)+B sin(ωt)) avec ω =

√
−∆

2
= ω0

√

1− 1

4Q2
.

3. J’utilise le second enregistrement pour mesurer
la période des oscillations (ici la pseudo-période est
confondue avec la période propre car les frottements
sont très faibles, le système oscilla très longtemps).

On a 20T0 = 45, 3 ms soit T0 = 3, 23 ms et la

fréquence est f0 =
1

T0

= 441 Hz.

J’utilise le premier enregistrement pour mesurer le temps de relaxation τ .

Le temps de relaxation correspond à l’intersection de
la tangente à l’origine et de l’asymptote à la courbe
soit τ = 2, 15 s. Ce temps dans l’expression de z(t)
se trouve dans l’exponentielle qui est de la forme

e−t/τ = e−
ω0

2Q
t soit τ =

2Q

ω0

=
Q

πf0
. Le facteur de

qualité est donc Q = πf0τ = 2980: c’est énorme. Ce
qui correspond bien à ce que l’on observe, le système
oscille très longtemps avant de s’annuler, il y a très
très peu de frottements.

4. Le plan passant par M et perpendiculaire à Oz est un plan de symétrie donc le champ magnétique en
M est perpendiculaire à ce plan soit

−→
B (M) est selon Oz.

On repère le point M par ses coordonnées cylindriques (r, θ, z), il y a invariance par rotation autour de Oz

donc
−→
B ne dépend pas de θ et invariance par translation selon Oz donc

−→
B ne dépend pas de z.

On a donc
−→
B = B(r)

−→
Uz .

5. Les lignes de champ magnétique sont des droites
parallèle à Oz, on prend pour contour d’Ampère un
rectangle dans un plan contenant Oz compris entre
r1 et r2 > r1 et de largeur h.
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On calcule la circulation de
−→
B sur ce rectangle: C =

∫

−→
B (M).d

−−→
OM =

∫ A3

A2

B(r2)
−→
Uz .dl(−

−→
Uz)+

∫ A1

A4

−→
B (r1)

−→
Uz.dl(

−→
Uz) =

(B(r1)−B(r2))h.

Oz

r1
r2

Oz

r1
r2

On choisit dans un premier temps r1 < r2 < R:
le contour n’enlace aucun courant donc d’après le
théorème d’Ampère C = µ0Ienlaces = 0 soit B(r1) =
B(r2): le champ magnétique est uniforme dans le
solénoide.

On choisit ensuite le cas où r1 < R < r2: d’après le
théorème d’Ampère on a C = (B(r1) − B(r2))h =
µ0nhI avec B(r2) = 0 (champ nul à l’extérieur) et
B(r1) = Bint (champ uniforme à l’intérieur) donc
Bint = µ0nI.

6. AN: B0 = µ0nI = 0, 12 mT . Le champ magnétique terrestre est de l’ordre de qqs 10 µT .

7. L’approximation du solénoide infini permet d’avoir le champ dans une direction et qui dépend d’une
variable pour pouvoir appliquer simplement le théorème d’Ampère. Cette condition est vérifiée lorsque le
rayon du solénoide est petit devant sa longueur.

8. Le plan (M,
−→
Ur,

−→
Uz) est un plan d’antisymétrie donc le champ électrique en M lui est perpendiculaire

soit
−→
E est selon

−→
Uθ.

Il y a invariance par rotation autour de Oz donc
−→
E ne dépend pas de θ et invariance par translation selon

Oz donc
−→
E ne dépend pas de z.

On a donc
−→
E = E(r, t)

−→
Uθ.

9. On applique l’équation de Maxwell-Faraday avec
−→
E = E(r, t)

−→
Uθ. Dans l’expression du rotationnel

donnée: Er = Ez = 0 et Eθ = E(r, t) ne dépend que de r on a donc
−→
rot

−→
E =

1

r

rEθ

∂r

−→
Uz = −∂

−→
B

∂t
= −µ0n

di

dt

−→
Uz

soit
rEθ

∂r
= −µ0nr

di

dt
= +µ0nIrω sin(ωt).

On intègre par rapport à r: rE(r, t) = µ0nI
r2

2
ω sin(ωt) soit E(r, t) = µ0nI

r

2
ω sin(ωt).

10. On cherche la force magnétique qui s’applique sur le dipôle de moment d
−→M placé dans le champ

magnétique
−→
B = b(z) cos(ωt)

−→
Uz.

Cette force s’écrit d
−→
Fm = (d

−→M.
−−→
grad)

−→
B .

Avec d
−→M.

−−→
grad = χb(z)dτ cos(ωt)

−→
Uz.

−−→
grad = χb(z)dτ cos(ωt)

∂

∂z

Et d
−→
Fm = (d−→µ .

−−→
grad)

−→
B = χb(z)dτ cos(ωt)

∂

∂z
(b(z) cos(ωt)

−→
Uz) = χb(z)dτ

db

dz
cos2(ωt)

−→
Uz = −χ

B2
0

R
(1− z

R
)dτ cos2(ωt)

−→
Uz.

Par identification avec l’énoncé on a α = χ
B2

0

R
(1− z

R
).

La force magnétique est dirigée selon −−→
Uz or le champ magnétique diminue quand z augmente (b(z) = 1− z

R )
donc le dipôle est attiré par les champs forts.

11. La force est en cos2(ωt) soit cos(2ωt) = 2 cos2(ωt)− 1 donc cos2(ωt) =
1 + cos(2ωt)

2
.

On veut que le diapason vibre à la fréquence fd = 256 Hz soit à la pulsation ωd = 2πfd qui correspond à
la fréquence de la force

−−→
dFm qui le fait vibrer. Or cette force vibre à la pulsation 2ω. On doit donc avoir

2ω = ωd soit 2f = fd où f est la fréquence du courant dans le solénoide qui crée le champ magnétique et fd

la fréquence du diapason. Soit f =
fd

2
= 128 Hz.
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II. Correction: électrocardiogramme (d’après E3A MP 2025)

1. Il y a invariance par rotation et par translation donc le champ électrique ne dépend que de r.

Les plans (M,−→ur,
−→uz) et (M,−→ur,

−→uθ) sont des plans P
+ donc le champ électrique en M appartient à ces deux

plans, soit le champ électrique est selon −→ur.

On choisit pour surface de Gauss, un cylindre de rayon a < r < a+ b et de longueur L.

Le flux du champ électrique à travers ce cylindre est φ = E(r)2πrL.

On applique le théorème de Gauss qui s’écrit φ =
Qint

ǫ0ǫr
=

Q

ǫ0ǫr
= E(r)2πrL. Le champ électrique dans la

membrane est donc
−→
E =

Q

2πǫ0ǫrrL
−→ur.

2. La relation locale entre le champ électrique et le potentiel est
−→
E = −−−→

gradV (M) = −dV

dr
−→ur. On a donc

dV

dr
= − Q

2πǫ0ǫrrL
soit en intégrant par rapport à r il vient V (M) = − Q

2πLǫ0ǫr
ln r + A (relation valable

dans la membrane pour a < r < a+ b).

On obtient la tension demandée VA − VE = V (r = a)− V (r = a+ b) =
Q

2πLǫ0ǫr
ln(1 +

b

a
) ≈ Qb

2πaLǫ0ǫr
pour

a >> b.

3. On applique la relation Q = C(VA − VE) donc C =
Q

VA − VE
=

2πaLǫ0ǫr
b

.

Pour comparer à la donnée de la littérature médicale on a cm =
C

2πaL
=

ǫ0ǫr

b
. AN: cm = 1, 0.10−2 F.m−1,

en accord avec la littérature.

On a VA − VE =
Q

C
=

σS

cmS
=

σ

cm
donc σ = cm(VA − VE) = −6, 1.10−4 C.m−2.

4. La tension U1 s’écrit U1 = VG − VD =
−→p .−−→OG

4πǫ0OG3
−

−→p .−−→OD

4πǫ0OD3
=

−→p .(
−−→
OG+

−−→
DO)

4πǫ0d3
=

−→p .−−→DG

4πǫ0d3
.

avec −→p .−−→DG = −→p .DG−→ux = pxDG

On a donc U1 = VG − VD =
pxDG

4πǫ0d3
= Kpx avec K =

DG

4πǫ0d3
.

5. Sur le tableau donné, je trace le vecteur px−→ux aux instants ti et j’en déduis l’allure de la courbe px en
fonction du temps. Or comme U1 = Kpx la courbe donnant U1 en fonction du temps a la même allure. On
trouve que cette courbe correspond à la courbe d.

px

tt0 t1 t16
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