ITC 2% ANNEE
SEMAINE N°16

28 pPECEMBRE 2025

del, tité.

DM 112 N° 2 (5/2): Algorithmique fondamentale - Récursivité -

DM ITC? N°2 (5/2) :

A REMETTRE LE

Note finale : caicul du nombre diinversions dans une liste /

PARTIE 1 : CALCUL DU NOMBRE D’ INVERSIONS DANS UNE LISTE

La majorité des sites internet de rencontre, les réseaux sociaux, I'analyse du "ranking"
avec Google, exploitent des algorithmes de détermination du nombre d’inversions dans une
liste.

On fait par exemple appel a ce type d’'algorithme, lorsqu’il s’agit de réaliser la comparaison
des golts de deux personnes ayant classé des oeuvres musicales par ordre de préférence.

On considére une liste de n entiers dans laquelle on souhaite déterminer le nombre d’in-
versions.
On donne un exemple de recensement des inversions dans la liste L ci-dessous :

L=[10[7[3] 14|

l 7 passe avant 10 (1 inversion)

L=[7[10[3]14]

J 3 passe avant 10 et avant 7 (2 inversions)

L=[3[7]10] 14

l 14 ne bouge pas (0 inversions)

L={3[7]10] 14|

Ainsi, on recense au total 3 inversions dans la liste originelle.

I ALGORITHME NAIF

0 1- Compléter I'algorithme naif nbinv_naif (L) renvoyant le nombre d’inversions dans la
listeL:

Listing 1 — Recensement des inversions version naive
def nbinv_naif (L) :

R N S S R SR
—
o
-

return ——m———————

O 2- Déterminer la complexité de cet algorithme. Conclure.

II ALGORITHME RECURSIF PERFORMANT : «DIVISER POUR REGNER»

On cherche désormais a abaisser la complexité de I'algorithme précédent en exploitant
le paradigme «diviser pour régner».

Le principe de 'algorithme est le suivant :
e La fonction principale sépare la liste en deux sous-listes de taille identique (ou
presque) et ce, de maniére récursive.

e Ces sous-listes sont ensuite fusionnées en procédant a leur tri, tout en comptant le
nombre d’inversions.

o ArteENTION : pour faciliter son comptage, le nombre d’'inversions cumulées au fur et a
mesure de la procédure de tri sera concaténé en fin de liste

Lycée MicheL MONTAIGNE
GRAYE JEAN-LAURENT

1/5

Année 2025-2026

ITC 2% ANNEE
SEMAINE N°16

28 pPECEMBRE 2025

DM 1p12 N° 2 (5/2): Algorithmique fondamentale - Récursivité - modéle entité

0 3- Fonction de coupure récursive Listing 2 — Fusion des sous-listes et comptage des inversions
On suppose disposer dans cette question de la fonction fusion_compt(L1,L2) char-
gée de réaliser la fusion des sous-listes L1 et L2 ainsi que le recensement des | def fusion_compt (L1,L2):
inversions. 2 a_ajouter1,a_ajouter2=L1.pop(),L2.pop() #retrait du dernier
élément de chaque liste (cumul des inversions)
3 a_ajouter=0
Ecrire une fonction nbinv_rec(L) qui réalise récursivement la coupure de la liste en 4 ni1,n2=len (L1),len(L2)
deux sous-listes et commande la fusion de celle-ci. On n’omettra pas de concaténer 5 auxil =[]
en fin de liste L une valeur initialement nulle, permettant d’inclure ensuite le cumul 6 i,j=0,0 .
du nombre d’inversions lors des différentes fusions. 7 while (i<n1) and (j<n2):
8 if L1[i] > L2[]j]:
. . auxil .append(L2] j
O4- Fonction de fusion et comptage 12 _______?E_ (21D
On se propose désormais de rédiger la fonction fusion_compt. " cor
12| else
Lors de la fusion, il faudra bien faire attention de compter correctement le nhombre 13 auxil .append(L1[i])
d’inversions cumulées. T
is if jl=len(L2):
))] 16 auxil+=L2[j :]
Supposons que nous en soyons a I'étape de fusion des deux sous-listes triées sui- . else:
vantes : 18 auxil+=L1[i:]
19 auxil .append(—————————-)
20 return auxil
|3|7|10|14|18|19| |2|11|16|17|23|25|
On remarque que si 'on insére un élément de la sous-liste de droite dans la liste finale d- Rédiger enfin la fonction nb_inv(L) exploitant nbinv_rec(L) qui renvoie le
avant un élément de la sous-liste de gauche, cela signifie qu’il y a une inversion. nombre d'inversions présentes dans la liste L.
Exoli | i cel)) i Ji e- Déterminer enfin par calcul la complexité «en gros» de cet algorithme. On distin-
a- .xp iquer af)rs pogrquql cela entralr',n.e autoTa’thuement quil y a autant myer- guera le meilleur et le pire des cas. Conclure.
sions supplémentaires a compter qu'’il y a d’éléments restants dans la sous-liste
de gauche. o . . -
g NB :On pourra supposer, pour simplifier la rédaction, que le nombre d’éléments
b- A partir des sous-listes ci-dessus, compter par exemple le nombre d’inversions a de la liste a traiter est une puissance de 2.
recenser lorsque I'on insére 2 dans la liste finale.
¢ En vous appuyant sur la réponse a la question précédente, compléter le code de
la fonction fusion_compt (L1,L2) chargée de réaliser la fusion des sous-listes
triées ainsi que le comptage et I'affichage du nombre total d’inversions. Dans
ce code, a chaque étape de tri et fusion, on stockera, comme prévu, le nombre
d’inversions cumulées recensées en derniére position de la liste renvoyée :
Lycée MicHeL MONTAIGNE 2/5 Année 2025-2026

GRAYE JEAN-LAURENT

ITC 2% ANNEE
SEMAINE N°16

28 pPECEMBRE 2025

del, tité.

DM 112 N° 2 (5/2): Algorithmique fondamentale - Récursivité -

PARTIE 2 : PRINCIPE DES CODES "CHECKSUM' OU CODES CORRECTEURS

/

La somme de contréle ou "checksum" en anglais, parfois appelée «empreinte», est un
nombre ajouté a des données a transmettre (ou bien a stocker sur un support d’archivage),
afin de vérifier la parfaite identité entre le message émis et celui regu (ou bien "déstocké"
depuis son support). Le principe est élémentaire et consiste a former selon un algorithme, et
a ajouter aux données a transmettre (ou a conserver), un code qui dépend de celles-ci; on
parle alors de redondance. Au moment de la réception (ou du déstockage des données), on
calculera par le méme algorithme cette somme de contrdle a partir des données regues (ou
déstockées) et on le comparera a la somme de contrdle transmise avec les données ; I'éga-
lité des deux sommes de contrdle assure alors I'intégrité de la transmission du message. A
contrario, une discordance de la valeur des deux sommes signale qu'’il y a eu corruption des
données.

La clé d’'un code INSEE ou bien le 13ieéme chiffre d’'un code barre en sont deux exemples
simples.

L'énoncé qui suit propose d’étudier quelques algorithmes de génération de somme de
contrdle.

I Codage par controle de parité (ou VRC, pour Verfical Re-
dundancy Checking)

Il s’agit d’'un des systémes les plus simples; il consiste a ajouter un bit supplémentaire a
un certain nombre de bits de données appelé mot de code. Souvent, il y a 7 bits réservés au
message auquel on ajoute 1 bit de parité égal a la somme des 7 bits modulo 2. Cela signifie
que si le nombre de bits égaux a 1 du message est impair, alors on ajoute 1 comme bit de
contréle, sinon on ajoute 0. Lensemble ainsi constitué est donc codé sur un octet (8 bits).
Lexemple le plus classique est le codage des caractéres ASCII qui sont au nombre de 128
et sont donc codés sur 7 bits, auquel on peut ajouter le bit de parité, pour finalement former
un octet.

Dans la suite, on n’aura pas a vérifier que les listes passées en entrée des fonctions sont
constituées de bits, et donc de 0 ou de 1.

O Ecrire le script Python d’une fonction somme_modulo (L) prenant en entrée une liste de
bits L non vide (inutile de le vérifier), non nécessairement de longueur 7, et renvoyant

la somme de ses bits, modulo 2.

® En déduire une fonction rajoute_bit_parite(L) prenant en entrée une liste L non
vide, et renvoyant cette méme liste avec un bit supplémentaire a la fin correspondant
au bit de parité. Attention : la liste L ne devra pas étre modifiée.

©® On suppose gu’une liste (non nécessairement de 8 bits) constituée de 0 et de 1 codée
par bit de parité a subi au plus une erreur lors de la transmission. Montrer que pour
savoir si elle a subi une erreur ou non, il suffit de calculer la somme de ses bits modulo
2. Sile résultat est 0, il n’y a pas eu d’erreur, sinon il y en a eu une.

O En déduire une fonction decodage_parite prenant en entrée une liste de bits (de
taille au moins 2, inutile de le vérifier) correspondant a la liste regue apres transmis-
sion d’une liste codée par bit de parité ayant subi au plus une erreur, et qui :

e s’ily a eu une erreur de transmission, affiche un message d’erreur a I'écran.

e sinon, retourne uniquement une nouvelle liste dont les éléments sont ceux de L,
le bit de parité supprimé.

© Le codage par bit de parité paire permet-il de corriger une erreur ? Permet-il par ailleurs
de détecter deux erreurs ?

I Codage par répétition

Le code de répétition est une solution simple pour se prémunir des erreurs de communi-
cation dues au "bruit" (perturbation liée a I'environnement ou la structure méme du systéeme
de communication). C’est une technique de codage de canal, ¢’est-a-dire un code correcteur.

Coder une liste par répétition consiste a répéter un certain nombre de fois k chaque bit
de la liste. Par exemple, avec la liste L suivante, et k = 3, on obtient :

L=1[1,100,1 — [1,1,1,1,1,1,0,0,0,0,0,0,1,1,1]

© Ecrire une fonction repetition(L,k) prenant en entrée une liste de bits L, non vide,
et un entier k, et retournant la liste correspondant a la répétition k fois de chaque bit
de L. Attention : on veillera la-encore a conserver intacte la liste originelle L.

Le décodage apres transmission se fait en considérant les bits de L par paquets de k
bits (k étant connu du destinataire). On regarde simplement quel bit apparait le plus
dans chaque paquet. La figure ci-dessous montre le fonctionnement sur la liste prise
en exemple : les bits entourés correspondent a deux erreurs de transmission mais le
message décodé est correct. Par exemple avec la liste L précédente et k = 3

Lycée MicheL MONTAIGNE
GRAYE JEAN-LAURENT

3/5

Année 2025-2026

ITC 2% ANNEE
SEMAINE N°16

28 pPECEMBRE 2025

del, tité.

DM 112 N° 2 (5/2): Algorithmique fondamentale - Récursivité -

Le décodage a une petite différence suivant la parité de k :

e si k estimpair, il y a forcément un élément majoritaire (0 ou 1) sur chaque paquet
de k bits.

e si k est pair, il se peut qu’il y ait autant de bits a 0 que de bits a 1 sur chaque
paquet de k bits. Dans ce cas, le décodage est rendu impossible !

® Ecrire une fonction decodage_majoritaire(L,k) prenant en entrée une liste L de
bits, dont la longueur qu’on notera n ici est supposée étre un multiple de &, ce que le
code devra vérifier (et renvoyer un message d’erreur si nécessaire), et renvoyant une
liste de taille 7, correspondant au décodage majoritaire de chaque paquet de k bits de
L. Si on trouve un groupe de k bits contenant autant de 0 que de 1, on affichera une
erreur a I'écran, et on ne renverra aucune liste.

© Justifier que le code de répétition (avec facteur de répétition k) permet de détecter au

) k . . .
moins bJ erreurs et d’en corriger au moins {TJ ceci dans chaque bloc.

IIT Le controle de parité croisé (ou LRC pour Longitudinal
Redundancy Checking)

III.1 Principe

Supposons que la liste L que I'on souhaite coder soit de taille n*> avec n un entier. On
peut alors répartir ces éléments en r listes elles-mémes de taille n, et voir la liste L comme
un tableau en deux dimensions. La figure suivante présente cette visualisation avec une liste
L contenant 9 éléments, répartis en 3 listes de taille 3 :

01 0
L=1[0,1,0],[1,1,01,[0,1,1]] qu’on peut visualiserainsi:[{1 1 0
01 1

Pour i et j deux entiers entre 0 et n — 1, L[{] est la i*™e liste de L (correspondant a la ieme

ligne du tableau), et donc I'élément L[i][j] est le bit sur la i#™e ligne et la jéme colonne (lignes
et colonnes sont numérotées a partir de 0 comme toujours en Python).
Le code de parité croisé consiste a rajouter un bit a chaque ligne et a chaque colonne, cor-
respondant au bit de parité de chaque ligne/colonne. On ajoute également un bit de parité
en bas a droite (correspondant a la fois a la parité de la colonne et de la ligne auquel il
appartient). On obtient ainsi le tableau suivant :

01 01
1 1 .00
01 10
1 1 11

@ Montrer mathématiquement que le bit de parité en bas a droite (coordonnées [n, n]
dans un tableau en Python) fonctionne aussi bien pour sa colonne que pour sa ligne.

® On considere le tableau suivant, correspondant au tableau obtenu aprés transmission
d’un tableau de taille 4 x 4 auquel on a rajouté les bits de parité sur les lignes et les
colonnes comme décrit précédemment, pour obtenir un tableau de taille 5 x 5 :

Sco—o =
O = — =
_—— O
[s
O — 0O =

On assure qu'il y a eu au plus une erreur de transmission. Si il y en a eu une, donnez
I'emplacement du bit corrompu, et sinon, justifiez qu’il n’y a pas eu d’erreur.

© Justifiez que le contrble de parité croisé permet de détecter et de corriger une erreur.
Peut-il & coup s0r détecter 2 erreurs ? En corriger 27 On justifiera soigneusement les
reponses.

III.2 Mise en oeuvre

©® Codage par controle de parité croisé
Ecrire une fonction rajoute_parite_croise(T) prenant en entrée un tel tableau
(sous forme de listes de listes). En notant n X n ses dimensions (n est classiquement
accessible par 1en(L)), la fonction renvoie un tableau (sous forme de listes de listes)
de taille (n + 1) X (n + 1) correspondant a I'ajout du contrble de parité croisé.

® Décodage par controle de parité croisée

a- Ecrire une fonction parite_lignes(T) prenant en entrée une liste de listes T
correspondant a un tableau codé par contrble de parité croisé, et renvoyant la
liste des indices des lignes pour lesquelles la parité n’est pas respectée (on ren-
verra une liste vide si la parité est respectée sur toutes les lignes).

b- Ecrire de méme une fonction pour les colonnes parite_colonnes(T).

c¢- Ecrire une fonction decodage_parite_croise(T), prenant en entrée une liste
de listes T supposée étre encodée par contrdle de parité croisé et récupérée
aprés transmission (donc ayant subi des erreurs éventuelles) et :

Lycée MicheL MONTAIGNE
GRAYE JEAN-LAURENT

4/5

Année 2025-2026

ITC 2% ANNEE
SEMAINE N°16

DM 112 N° 2 (5/2): Algorithmique fondamentale - Récursivité -

s

7

28 pPECEMBRE 2025

s Py

e retournant la liste initiale aprés décodage, si le décodage parait possible
(on suppose que le nombre d’erreurs ayant eu lieu est le plus petit possible
pouvant produire la liste T aprés correction)

o affichant un message d’erreur a I'écran indiquant si on sait qu’au moins un
certain nombre d’erreurs a eu lieu mais qu’on est incapable de décoder.

Lycée MicheL MONTAIGNE
GRAYE JEAN-LAURENT

5/5

Année 2025-2026

