Programme des colles de la semaine du 10 novembre 2025

Nombres complexes. Calculs de primitives

Questions de cours

- 1. Énoncer et démontrer l'inégalité triangulaire (dans C).
- 2. Montrer que : $\forall (\theta, \theta') \in \mathbb{R}^2, \ e^{\mathbf{i}(\theta + \theta')} = e^{\mathbf{i}\theta}e^{\mathbf{i}\theta'}$.
- 3. Donner, pour $n \in \mathbb{N}^*$, la liste des n racines n-ièmes de l'unité et démontrer le résultat.
- 4. Énoncer et démontrer le résultat sur les relations coefficients-racines relatives à une équation polynomiale de degré 2.
- 5. Montrer que si I est un intervalle de \mathbb{R} et si $\varphi: I \longrightarrow \mathbb{C}$ est dérivable sur I, alors $f: t \longmapsto e^{\varphi(t)}$ est dérivable sur I et déterminer l'expression de la dérivée.
- 6. Expliquer comment calculer une primitive de ln à l'aide du théorème fondamental de l'intégration et d'une intégration par parties.
- 7. Énoncer les formules d'intégration par parties et de changement de variable.
- 8. Proposer une interprétation géométrique de l'intégrale $\int_0^1 \sqrt{1-x^2} dx$ permettant de deviner sa valeur, avant de faire le calcul *via* le changement de variable $x = \sin(t)$ (ou $x = \cos(t)$).

Nombres complexes

- 1. Définition des nombres complexes donnés par partie réelle et partie imaginaire. Somme, produit. Énoncé de formules déjà vues sur les nombres réels : somme de termes d'une suite géométrique ; factorisation de $a^n b^n$ par a b $(a, b \in \mathbb{C}, n \in \mathbb{N}^*)$; formule du binôme de Newton.
- 2. Conjugué d'un nombre complexe; propriétés usuelles 1: conjugué, d'une somme, d'un produit, de l'inverse, caractérisation des réels, des imaginaires purs, formules : $\forall z \in \mathbb{C}, \ \text{Re}(z) = \frac{z + \overline{z}}{2}, \ \text{Im}(z) = \frac{z \overline{z}}{2i}.$
- 3. Module d'un nombre complexe. Interprétation géométrique.
- 4. Propriétés ¹:
 - (a) $\forall z \in \mathbb{C}, |z| = 0 \iff z = 0.$
 - (b) $\forall z \in \mathbb{C}, |z| = |\overline{z}|.$
 - (c) $\forall z \in \mathbb{C}, |-z| = |z|$.
 - (d) $\forall z \in \mathbb{C}, |z|^2 = z\overline{z}.$
 - (e) Le module prolonge la valeur absolue déjà définie sur \mathbb{R} .
 - (f) $\forall x \in \mathbb{R}_+, |x| = x, \text{ donc} : \forall z \in \mathbb{C}, ||z|| = |z|.$
 - (g) $\forall z \in \mathbb{C}$, $|\operatorname{Re} z| \leq |z|$, $|\operatorname{Im} z| \leq |z|$.
- 5. Module d'un produit ¹ ou d'un quotient.
- 6. Inégalité triangulaire et cas d'égalité 1.
- 7. Pour $\theta \in \mathbb{R}$, notation $e^{i\theta}$.
- 8. Formules d'Euler ¹.
- 9. Pour tout $(\theta, \theta') \in \mathbb{R}^2$, $e^{\mathbf{i}(\theta + \theta')} = e^{\mathbf{i}\theta}e^{\mathbf{i}\theta'}$.
- 10. Formule de Moivre ¹.
- 11. Savoir-faire : linéarisation d'expressions trigonométriques.
- 12. Savoir-faire : usage de l'angle moitié pour transformer l'expression d'une somme de nombres complexes de module 1.
- 13. Forme trigonométrique d'un nombre complexe : $z = \rho e^{i\theta}$ avec $\rho \in \mathbb{R}_+$ et $\theta \in \mathbb{R}$.
- 14. Arguments d'un nombre complexe non nul z; argument principal (dans $]-\pi,\pi]$) noté $\arg(z)$.
- 15. Propriétés 1 :
 - (a) $\forall z \in \mathbb{C}^*, \arg(\overline{z}) \equiv -\arg(z)$ [2 π];
- 1. Résultat démontré en cours.

- (b) Si z et $z' \in \mathbb{C}^*$, $\arg(zz') \equiv \arg(z) + \arg(z')$ [2π];
- (c) Si z et $z' \in \mathbb{C}^*$, $\arg\left(\frac{z}{z'}\right) \equiv \arg(z) \arg(z')$ [2π];
- (d) Si $z \in \mathbb{C}^*$, $\arg(-z) \equiv \arg(z) + \pi$ [2 π];
- 16. Deux nombres complexes non nuls sont égaux si et seulement s'ils ont même module et même argument modulo 2π .
- 17. Savoir-faire : transformer un expression de la forme $a\cos(t) + b\sin(t)$, avec $a, b, t \in \mathbb{R}$ tels que $(a, b) \neq (0, 0)$, en une expression de la forme $r\cos(t-\varphi)$, avec $r \in \mathbb{R}_+^*$ et $\varphi \in \mathbb{R}$. On a $a + \mathbf{i}b = re^{\mathbf{i}\varphi}$.
- 18. Racines $n^{\text{ièmes}}$ de l'unité
 - (a) Résolution 1 de l'équation $z^n = 1$ d'inconnue $z \in \mathbb{C}$, avec $n \in \mathbb{N}^*$ fixé.
 - (b) En notant $\omega = e^{\frac{2i\pi}{n}}$, propriétés ¹:
 - i. on a : $\omega^n = 1$.
 - ii. Les racines $n^{\text{ièmes}}$ de l'unité sont $1, \omega, \omega^2, \dots, \omega^{n-1}$.
 - iii. Si $n \geqslant 2$, on a : $1 + \omega + \omega^2 + \cdots + \omega^{n-1} = 0$, autrement dit : $\sum_{z \in \mathbb{U}_n} z = 0$.
- 19. (a) Méthode pour trouver les racines carrées d'un nombre complexe.
 - (b) Résolution des équations polynomiales de degré 2 à coefficients complexes.
 - (c) Relations coefficients-racines ¹.
- 20. Exponentielle complexe
 - (a) Définition
 - (b) Propriétés 1
 - i. Pour tout $z \in \mathbb{C}$, on a $|\exp(z)| = e^{\operatorname{Re}(z)}$ et $\operatorname{Im}(z)$ est un argument de $\exp(z)$.
 - ii. Pour tout $(z, z') \in \mathbb{C}^2$, $\exp(z + z') = \exp(z) \exp(z')$.
 - iii. Pour tout $z \in \mathbb{C}$, $\frac{1}{e^z} = e^{-z}$.
 - iv. Pour tout $(z, z') \in \mathbb{C}^2$, $\exp(z) = \exp(z')$ si et seulement s'il existe $k \in \mathbb{Z}$ tel que $z z' = 2i\pi k$.
- 21. (a) Fonctions d'une variable réelle à valeurs complexes. Une telle fonction est dérivable si ses parties réelle et imaginaire le sont. Les formules pour la dérivée d'une somme, d'un produit, d'un quotient, restent valables.
 - (b) Dérivabilité et dérivée 1 de $t \mapsto e^{\varphi(t)}$, où $\varphi: I \longrightarrow \mathbb{C}$ est dérivable sur un intervalle I.
- 22. Nombres complexes et géométrie plane
 - (a) Affixe d'un vecteur
 - (b) Interprétation géométrique des transformations $z \mapsto z + z_0$, $z \mapsto z e^{i\theta_0}$, où $z_0 \in \mathbb{C}$ et $\theta_0 \in \mathbb{R}$ sont fixés.
 - (c) Si A, B, C D sont quatre points du plan tels que $A \neq B$ et $C \neq D$, d'affixes respectives z_A, z_B, z_C et z_D :
 - le réel $\arg\left(\frac{z_D-z_C}{z_B-z_A}\right)$ est une mesure de l'angle orienté $(\overrightarrow{AB},\overrightarrow{CD})$;
 - les droites (AB) et (CD) sont parallèles ssi les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires ssi $\arg\left(\frac{z_D-z_C}{z_B-z_A}\right)=0$ $[\pi]$ ssi $\frac{z_D-z_C}{z_B-z_A}\in\mathbb{R}$.
 - les droites (AB) et (CD) sont orthogonales ssi l'angle orienté $(\overrightarrow{AB}, \overrightarrow{CD})$ vaut $\frac{\pi}{2}$ modulo π ssi $\arg\left(\frac{z_D z_C}{z_B z_A}\right) = \frac{\pi}{2} \left[\pi\right]$ ssi $\frac{z_D z_C}{z_B z_A} \in \mathbf{i}\mathbb{R}$.

Calculs de primitives

On considère des fonctions d'une variable réelle, à valeurs dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

- 1. Primitive d'une fonction. Si F est une primitive de f sur un intervalle I, alors l'ensemble des primitives de f est l'ensemble des fonctions de la forme F+c, où $c \in \mathbb{K}$.
- 2. Si $f: I \longrightarrow \mathbb{K}$ est une fonction admettant une primitive, si $a \in I$ et $\alpha \in \mathbb{K}$, il existe une unique ¹ primitive F de f sur I vérifiant $F(a) = \alpha$.
- 3. Liste de primitives usuelles.
- 4. Propriétés pour l'instant admises de l'intégrale
 - (a) Définition intuitive comme l'aire (algébrique) sous la courbe de la fonction intégrée
 - (b) Linéarité de l'intégrale
 - (c) Relation de Chasles
 - (d) Positivité de l'intégrale. Cas d'une fonction continue et positive d'intégrale nulle.
 - (e) Croissance de l'intégrale

- (f) Inégalité triangulaire pour les intégrales.
- 5. Théorème fondamental de l'intégration. Conséquence : une fonction continue sur I admet des primitives sur I.
- 6. Intégration par parties
- 7. Changement de variable
- 8. Méthode pour calculer une primitive d'une fonction de la forme $t \longmapsto e^{\alpha t} \cos(\omega t)$ ou $t \longmapsto e^{\alpha t} \sin(\omega t)$ avec $\alpha, \omega \in \mathbb{R}^*$.
- 9. Méthode pour calculer une primitive d'une fonction de la forme $x \longmapsto \frac{1}{ax^2 + bx + c}$, où $a, b, c \in \mathbb{R}$ et $a \neq 0$.