Résumé du chapitre 23: systèmes linéaires

Table des matières

1	Définitions	1
2	Utilité du système homogène associé	1
3	Opérations élémentaires sur les lignes	1
4	Utilisation d'un pivot de Gauss et algorithme de Gauss-Jordan 4.a Utilisation d'un pivot de Gauss	1 1 1
5	Algorithme de résolution d'un système	1
6	Systèmes linéaires et matrices inversibles	2
7	Matrices d'opérations élémentaires 7.a Sur les lignes	2 2 2
1	Définitions	
2	Utilité du système homogène associé	
	Soit (\mathcal{L}) un système linéaire à n équations et p inconnues. Notons (\mathcal{L}_0) le système homogène associé. Soit s une solution de (\mathcal{L}) (dite solution particulière). Alors les solutions de (\mathcal{L}) sont les p -uplets de la forme $s+t$ où t est une solution de (\mathcal{L}_0) .	
3	Opérations élémentaires sur les lignes	
4	Utilisation d'un pivot de Gauss et algorithme de Gauss-Jorda	n
4.	a Utilisation d'un pivot de Gauss	
4.1	o Algorithme de Gauss-Jordan	

Algorithme de résolution d'un système

6 Systèmes linéaires et matrices inversibles

Proposition.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On note r le nombre de pivots obtenu en appliquant l'algorithme de Gauss-Jordan à la matrice A. $r \leq n$. Les assertions suivantes sont équivalentes :

- i) r=n
- ii) Le système homogène $AX = 0_{n,1}$ n'admet que la solution nulle
- iii) Pour tout $Y \in \mathcal{M}_{n,1}(\mathbb{K})$, le système AX = Y admet une unique solution
- iv) A est inversible

Proposition.

Toute matrice triangulaire supérieure (resp triangulaire inférieure) de coefficients diagonaux non nuls est inversible et son inverse est triangulaire supérieure (resp triangulaire inférieure)

7 Matrices d'opérations élémentaires

7.a Sur les lignes

Définition.

Soit Σ une opération élémentaire sur les matrices à n lignes. On appelle matrice de l'opération élémentaire Σ la matrice M_{Σ} obtenue en effectuant Σ sur les lignes de I_n .

Proposition.

Soit A une matrice à n lignes. En effectuant une opération élémentaire Σ sur les lignes de A on obtient la matrice $M_{\Sigma}A$.

Proposition.

Une matrice d'opération élémentaire sur les lignes est inversible.

7.b Sur les colonnes

Définition.

Soit σ une opération élémentaire sur les matrices à p colonnes. On appelle matrice de l'opération élémentaire σ la matrice M_{σ} obtenue en effectuant σ sur les colonnes de I_p .

Proposition.

Soit A une matrice à p colonnes. En effectuant une opération élémentaire σ sur les colonnes de A on obtient la matrice AM_{σ} .

Proposition.

Une matrice d'opération élémentaire sur les colonnes est inversible.