Résumé du chapitre 37: rang d'une matrice

Table des matières

- 1 Définition et propriétés relatives aux colonnes 1
- 2 Compatibilité avec la représentation matricielle 1
- 3 Propriétés d'invariance 1
- 4 Propriétés relatives aux lignes 2
- 5 Inversibilité et rang 2

1 Définition et propriétés relatives aux colonnes

Définition.

On appelle rang d'une matrice A et on note rg(A) le rang de la famille des colonnes de A.

Proposition.

Le rang d'une matrice est invariant par opérations élémentaires sur les colonnes.

Proposition.

Le rang d'une matrice échelonnée en colonnes est le nombre de pivots.

2 Compatibilité avec la représentation matricielle

Proposition.

Soit E un \mathbb{K} -ev de dimension finie. Soit \mathcal{B} une base de E. Soit \mathcal{F} une famille de vecteurs de E. Alors $rg(\mathcal{F}) = rg(Mat_{\mathcal{B}}(\mathcal{F}))$.

Proposition.

Soit E et F des \mathbb{K} -ev de dimension finie. Soit \mathcal{B} et \mathcal{C} des bases de E et F. Soit $f: E \to F$ une application linéaire. Alors $rg(f) = rg(Mat_{\mathcal{B},\mathcal{C}}(f))$.

3 Propriétés d'invariance

Proposition.

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$. $\forall B \in GL_n(\mathbb{K}), rg(B \times A) = rg(A)$ $\forall B \in GL_p(\mathbb{K}), rg(A \times B) = rg(A)$

Proposition.

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$. $rg(A^{\top}) = rg(A)$.

4 Propriétés relatives aux lignes

Proposition.

Le rang d'une matrice est le rang de la famille de ses lignes.

Proposition.

Le rang d'une matrice est invariant par opérations élémentaires sur les lignes.

Proposition.

Le rang d'une matrice échelonnée en lignes est égal au nombre de pivots.

5 Inversibilité et rang

Proposition.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. $rg(A) \leq n$. A est inversible ssi rg(A) = n.