Résumé du chapitre 41: variables aléatoires (va)

Table des matières

1	Définition	1
2	Support d'une va, évènements ne dépendant que de la valeur prise par une va, loi de probabilité d'une va 2.a Support d'une va	1 1 1 2
3	Va usuelles	2
4	Couple de va	3
5	Va indépendantes	4
6	Espérance 6.a Définition et théorème de transfert	4 4 5 5
7	Variance 7.a Définition et théorème de König-Huygens	66
8	Covariance 8.a Définition	7 7
1	Définition	

Définition.

On appelle va toute application $X:\Omega\to E$ où E est un ensemble. Si $E=\mathbb{R},$ on dit que la va est réelle.

- 2 Support d'une va, évènements ne dépendant que de la valeur prise par une va, loi de probabilité d'une va
- 2.a Support d'une va

Définition.

Soit $X: \Omega \to E$ une va. On appelle support de X l'ensemble $X(\Omega) = \{X(\omega) | \omega \in \Omega\}$ $(X(\Omega))$ est l'ensemble des valeurs que peut prendre X). $X(\Omega) \subset E$.

2.b Evènements ne dépendant que de la valeur prise par une va

Définition.

Soit $X:\Omega\to E$ une va. Soit A une partie de E. On note $(X\in A)$ l'évènement $\{\omega\in\Omega|X(\omega)\in A\}$ (évènement "la valeur prise par X appartient à A"). Soit $x\in E$. On note (X=x) l'évènement $\{\omega\in\Omega|X(\omega)=x\}$ (évènement "la valeur prise par X est égale à x").

Proposition.

Soit $X:\Omega\to E$ une va. $(X\in\emptyset)=\emptyset.\ (X\in X(\Omega))=\Omega.$ Soit A une partie de $E.\ \overline{(X\in A)}=(X\in\overline{A}).$ Soit A et B deux parties de E. $(X\in A)\cup(X\in B)=(X\in A\cup B).\ (X\in A)\cap(X\in B)=(X\in A\cap B).$ Si A et B sont disjointes alors $(X\in A)$ et $(X\in B)$ sont incompatibles.

2.c Loi de probabilité d'une va

Définition-Propriété.

Soit $X:\Omega\to E$ une va. L'application $P_X:\mathcal{P}(X(\Omega))\to [0,1]$ définie par $P_X(A)=P(X\in A)$ est une mesure de probabilité. P_X est appelée la loi probabilité de X.

Proposition.

Soit $X:\Omega\to E$ une va.

 $(X=x)_{x\in X(\Omega)}$ est un système complet d'évènements. En particulier, $\sum_{x\in X(\Omega)}P(X=x)=1$.

Pour tout $x \in E$, $(X = x) \neq \emptyset \Leftrightarrow x \in X(\Omega)$.

Pour toute partie finie A de E, $P(X \in A) = \sum_{x \in A} P(X = x)$.

Pour tout partie A de E, $(X \in A) = (X \in A \cap X(\Omega))$.

3 Va usuelles

Définition-Propriété.

Soit $C \in \mathbb{R}$. On dit qu'une va X est certaine de valeur C ssi X est constante de valeur C. Dans ce cas, $X(\Omega) = \{C\}$ et P(X = C) = 1.

Définition-Propriété.

Soit F un ensemble fini. On dit qu'une va X suit la loi uniforme sur F et on note $X \sim U(F)$ ssi $X(\Omega) = F$ et les évènements $(X = x), x \in F$ sont équiprobables. Dans ce cas, pour tout $x \in F$, $P(X = x) = \frac{1}{Card(F)}$ et, pour toute partie A de F, $P(X \in A) = \frac{Card(A)}{Card(F)}$.

Définition-Propriété.

Soit $p \in]0,1[$. On effectue une épreuve aléatoire menant à un succès avec la probabilité p. On note X la va prenant pour valeur 1 en cas de succès et 0 en cas d'échec.

$$X(\Omega) = \{0,1\}. \ P(X=1) = p \text{ et } P(X=0) = 1 - p.$$

On dit que X suit la loi de Bernouilli de paramètre p et on note $X \sim \mathcal{B}(p)$.

Définition-Propriété.

Soit $n \in \mathbb{N}^*$ et $p \in]0,1[$. On effectue n épreuves aléatoires indépendantes, chacune menant à un succès avec la probabilité p.

On note X la va prenant pour valeur le nombre de succès obtenus.

$$X(\Omega) = [[0, n]].$$
 Pour tout $k \in [[0, n]], P(X = k) = \binom{n}{k} (1 - p)^{n - k} p^k$.

On dit que X suit la loi binômiale de paramètres n et p et on note $X \sim \mathcal{B}(n,p)$.

4 Couple de va

Définition.

Soit $X: \Omega \to E$ et $Y: \Omega \to F$ deux va.

Le couple de va (X,Y) est considéré comme la va $\left\{ \begin{array}{ccc} \Omega & \to & E \times F \\ \omega & \mapsto & (X(\omega),Y(\omega)) \end{array} \right. .$

La loi conjointe du couple (X, Y) est la loi de la va ci-dessus.

Les lois marginales du couple (X, Y) sont la loi de X et la loi de Y

Proposition.

Soit $X: \Omega \to E$ et $Y: \Omega \to F$ deux va.

$$(X,Y)(\Omega) \subset X(\Omega) \times Y(\Omega)$$

Pour tout $(A, B) \in \mathcal{P}(E) \times \mathcal{P}(F)$, $((X, Y) \in A \times B)$ est l'évènement $(X \in A) \cap (Y \in B)$.

Pour tout $(x,y) \in E \times F$, ((X,Y) = (x,y)) est l'évènement $(X=x) \cap (Y=y)$.

Proposition.

Soit $X: \Omega \to E$ et $Y: \Omega \to F$ deux va.

Pour tout
$$x \in X(\Omega)$$
, $P(X = x) = \sum_{y \in Y(\Omega)} P((X, Y) = (x, y))$.
Pour tout $y \in Y(\Omega)$, $P(Y = y) = \sum_{x \in X(\Omega)} P((X, Y) = (x, y))$.

Les lois marginales sont déterminées par la loi conjointe.

Démonstration.

Soit $x \in X(\Omega)$. $(Y = y)_{y \in Y(\Omega)}$ est un système complet d'évènements donc, d'après la formule des probabilités totales, $P(X = x) = \sum_{y \in Y(\Omega)} P((X = x) \cap (Y = y)) = \sum_{y \in Y(\Omega)} P((X, Y) = (x, y)).$

Soit $y \in Y(\Omega)$. $(X = x)_{x \in X(\Omega)}$ est un système complet d'évènements donc, d'après la formule des probabilités totales, $P(Y = y) = \sum_{x \in X(\Omega)} P((X = x) \cap (Y = y)) = \sum_{x \in X(\Omega)} P((X, Y) = (x, y))$.

Proposition.

Soit $X: \Omega \to E$ et $Y: \Omega \to F$ deux va.

Pour tout $(x, y) \in X(\Omega) \times Y(\Omega)$, P((X, Y) = (x, y)) = P(X = x | Y = y)P(Y = y).

La loi conjointe de (X,Y) est déterminée par les lois conditionnelles de X sachant (Y=y), $y \in Y(\Omega)$ et par la loi de Y.

Pour tout $(x,y) \in X(\Omega) \times Y(\Omega)$, P((X,Y) = (x,y)) = P(Y = y|X = x)P(X = x).

La loi conjointe de (X,Y) est déterminée par les lois conditionnelles de Y sachant (X=x), $x \in X(\Omega)$ et par la loi de X.

Démonstration. Soit $(x, y) \in X(\Omega) \times Y(\Omega)$.

$$P((X,Y) = (x,y)) = P((X = x) \cap (Y = y)) = P(X = x|Y = y)P(Y = y).$$

 $P((X,Y) = (x,y)) = P((Y = y) \cap (X = x)) = P(Y = y|X = x)P(X = x).$

5 Va indépendantes

Définition.

Soit $X: \Omega \to E$ et $Y: \Omega \to F$ deux va.

On dit que X et Y sont indépendantes ssi pour tout $(A, B) \in \mathcal{P}(E) \times \mathcal{P}(F)$ les évènements $(X \in A)$ et $(Y \in B)$ sont indépendants i.e. $P((X,Y) \in A \times B) = P(X \in A)P(Y \in B)$.

Proposition.

Soit $X: \Omega \to E$ et $Y: \Omega \to F$ deux va.

X et Y sont indépendantes

 \Leftrightarrow pour tout $(x,y) \in X(\Omega) \times Y(\Omega)$, les évènements (X=x) et (Y=y) sont indépendants i.e. P((X,Y) = (x,y)) = P(X = x)P(Y = y)

Définition.

Soit $X_1: \Omega \to E_1,...,X_n: \Omega \to E_n$ des va. On dit que les va $X_1,...,X_n$ sont mutuellement indépendantes ssi pour tout $(A_1,...,A_n) \in \mathcal{P}(E_1) \times ... \times \mathcal{P}(E_n)$, les évènements $(X_1 \in A_1),...,(X_n \in A_n)$ sont mutuellement indépendants.

Proposition.

Soit $X_1: \Omega \to E_1, ..., X_n: \Omega \to E_n$ des va.

Les va $X_1,...,X_n$ sont mutuellement indépendantes

 \Leftrightarrow pour tout $(x_1,...,x_n) \in X_1(\Omega) \times ... \times X_n(\Omega)$, les évènements $(X_1 = x_1),...,(X_n = x_n)$ sont mutuellement indépendants.

Proposition.

Soit $n \in \mathbb{N}^*$ et $p \in]0,1[$.

Soit $X_1,...,X_n$ des va mutuellement indépendantes suivant la même loi de Bernouilli de paramètre p. Alors $X_1 + + X_n$ suit la loi binômiale de paramètres n et p.

6 Espérance

6.a Définition et théorème de transfert

Définition.

Soit $X:\Omega\to\mathbb{R}$ une va réelle.

On appelle espérance de X et on note E(X) le réel $\sum_{x \in X(\Omega)} P(X = x)x$

(E(X)) est la moyenne des valeurs que peut prendre X pondérée par leurs probabilités).

Théorème (Théorème de tranfert).

Soit $X: \Omega \to E$ une va et $f: E \to \mathbb{R}$. Alors $E(f(X)) = \sum_{x \in X(\Omega)} P(X = x) f(x)$.

6.b Exemples usuels

Proposition.

Soit X une va réelle.

Si X est certaine de valeur C où $C \in \mathbb{R}$, E(X) = C.

Si $X \sim U([[1, n]])$ où $n \in \mathbb{N}^*$, $E(X) = \frac{n+1}{2}$.

Si $X \sim \mathcal{B}(p)$ où $p \in]0,1[, E(X) = p.$

Si $X \sim \mathcal{B}(n, p)$ où $n \in \mathbb{N}^*$ et $p \in]0, 1[, E(X) = np.$

Démonstration.

Supposons X certaine de valeur C où $C \in \mathbb{R}$.

 $X(\Omega) = \{C\}. \ E(X) = P(X = C)C = 1 \times C = C.$

Supposons $X \sim U([[1, n]])$ où $n \in \mathbb{N}^*$.

$$X(\Omega) = [[1,n]]. \ E(X) = \sum_{k=1}^{n} P(X=k)k = \sum_{k=1}^{n} \frac{1}{n}k = \frac{1}{n}\sum_{k=1}^{n} k = \frac{1}{n}\frac{n(n+1)}{2} = \frac{n+1}{2}.$$
 Supposons $X \sim \mathcal{B}(p)$ où $p \in]0,1[.\ X(\Omega) = \{0,1\}.$ $E(X) = P(X=0)0 + P(X=1)1 = (1-p)0 + p1 = p.$ Supposons $X \sim \mathcal{B}(n,p)$ où $n \in \mathbb{N}^*$ et $p \in]0,1[.$ Pour tout $k \in [[1,n]], \binom{n}{k} = \frac{n}{k}\binom{n-1}{k-1}$ (car $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n}{k}\frac{(n-1)!}{(k-1)!(n-k)!} = \frac{n}{k}\frac{(n-1)!}{(k-1)!(n-1)-(k-1)!} = \frac{n}{k}\frac{(n-1)!}{(k-1)!(n-k)!}$ donc $k\binom{n}{k} = n\binom{n-1}{k-1}.\ X(\Omega) = [[0,n]].\ E(X) = \sum_{k=0}^{n} P(X=k)k = \sum_{k=0}^{n} k\binom{n}{k}(1-p)^{n-k}p^k = \sum_{k=1}^{n} n\binom{n-1}{k-1}(1-p)^{n-k}p^k = n\sum_{k=1}^{n} \binom{n-1}{k-1}(1-p)^{n-k}p^k = n\sum_{k=1}^{n} \binom{n-1}{k-1}(1-p)^{n-k}p^k = n\sum_{k=1}^{n} \binom{n-1}{k-1}(1-p)^{(n-1)-(k-1)}p^{k-1}p = np\sum_{k=1}^{n} \binom{n-1}{k-1}(1-p)^{(n-1)-(k-1)}p^{k-1} = np\sum_{k=1}^{n} \binom{n-1}{k-1}(1-p)^{(n-1)-(k-1)}p^{k-1} = np\sum_{k=1}^{n} \binom{n-1}{k-1}(1-p)^{(n-1)-(k-1)}p^{k-1} = np\sum_{k=1}^{n-1} \binom{n-1}{k-1}(1-p)^{(n-1)-(k-1)}p^{k-1} = np1^{n-1} = np1^{n-1}$

6.c Propriétés

Proposition (linéarité).

Pour tout $X: \Omega \to \mathbb{R}$ et $Y: \Omega \to \mathbb{R}$, E(X+Y) = E(X) + E(Y). Pour tout $\lambda \in \mathbb{R}$ et $X: \Omega \to \mathbb{R}$, $E(\lambda X) = \lambda E(X)$.

Proposition.

Soit X une va réelle et $C \in \mathbb{R}$. E(X + C) = E(X) + C.

Proposition.

Soit X et Y des va réelles. On suppose X et Y indépendantes. Alors E(XY) = E(X)E(Y).

Proposition (positivité).

Soit X une va réelle. On suppose X positive. Alors $E(X) \geq 0$.

Proposition (croissance).

Soit X et Y des va réelles. On suppose $X \leq Y$. Alors $E(X) \leq E(Y)$.

Proposition (inégalité de Markov).

Soit X une va réelle positive et a > 0. $P(X \ge a) \le \frac{E(X)}{a}$.

7 ${f Variance}$

Définition et théorème de König-Huygens 7.a

Définition.

Soit X une va réelle.

On appelle variance de X et on note V(X) le réel positif $E((X - E(X))^2)$. On appelle écart type de X le réel positif $\sqrt{V(X)}$.

Théorème (théorème de König-Huygens).

Soit X une va réelle. $V(X) = E(X^2) - E(X)^2$.

7.b Exemples usuels

Proposition.

Soit X une va réelle.

Si X est certaine de valeur C où $C \in \mathbb{R}$, V(X) = 0.

Si $X \sim U([1, n])$ où $n \in \mathbb{N}^*$, $V(X) = \frac{(n-1)(n+1)}{12}$.

Si $X \sim \mathcal{B}(p)$ où $p \in]0, 1[, V(X) = p(1-p)]$.

Si $X \sim \mathcal{B}(n, p)$ où $n \in \mathbb{N}^*$ et $p \in]0, 1[, V(X) = np(1-p).$

Démonstration.

Supposons X certaine de valeur C où $C \in \mathbb{R}$.

 $V(X) = E((X - E(X))^2)$. E(X) = C donc X - E(X) est nulle donc $(X - E(X))^2$ est nulle donc $E((X - E(X))^2) = 0 \text{ donc } V(X) = 0.$

Supposons $X \sim U([[1, n]])$ où $n \in \mathbb{N}^*$.

$$V(X) = E(X^2) - E(X)^2. \ E(X) = \frac{n+1}{2}. \ X(\Omega) = [[1, n]]. \ E(X^2) = \sum_{k=1}^{n} P(X = k)k^2 = \sum_{k=1}^{n} \frac{1}{n}k^2 = \sum_{k=1}^{n} \frac{1}{n}(n+1)(2n+1) - \frac{(n+1)(2n+1)}{2} - \frac{(n+1)(2n+1)}{2} - \frac{(n+1)(2n+1)}{2} - \frac{(n+1)(2n+1)}{2} - \frac{(n+1)(2n+1)}{2} = \frac{(n+1)(2n+1)}{2} - \frac{(n+1)(2n+1)}{2} - \frac{(n+1)(2n+1)}{2} = \frac{(n+1)(2n+1)}{2} - \frac{(n+1)(2n+1)}{2} = \frac{(n+1)(2n+1)}{2} - \frac{(n+1)(2n+1)}{2} = \frac{(n+1$$

$$\frac{1}{n}\sum_{k=1}^{n}k^2 = \frac{1}{n}\frac{n(n+1)(2n+1)}{6} = \frac{(n+1)(2n+1)}{6}. \ V(X) = \frac{(n+1)(2n+1)}{6} - (\frac{n+1}{2})^2 = (n+1)[\frac{2n+1}{6} - \frac{n+1}{4}] = \frac{(n+1)(2n+1)}{6}.$$

$$(n+1)^{\frac{\kappa=1}{12}} (n+1)^{\frac{2(2n+1)-3(n+1)}{12}} = (n+1)^{\frac{n-1}{12}} = \frac{(n-1)(n+1)}{12}.$$
Supposons $X \sim \mathcal{B}(p)$ où $p \in]0,1[$.

$$V(X) = E(X^2) - E(X)^2$$
. $E(X) = p$. $X(\Omega) = \{0, 1\}$. $E(X^2) = P(X = 0)0^2 + P(X = 1)1^2 = (1 - p) \times 0 + p \times 1 = p$. $V(X) = p - p^2 = p(1 - p)$.

Supposons $X \sim \mathcal{B}(n, p)$ où $n \in \mathbb{N}^*$ et $p \in]0, 1[$.

$$V(X) = E(X^2) - E(X)^2$$
. $E(X) = np$. Pour tout $k \in [[2, n]], \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1} = \frac{n(n-1)}{k(k-1)} \binom{n-2}{k-2}$

donc
$$k(k-1)\binom{n}{k} = n(n-1)\binom{n-2}{k-2}$$
. $X(\Omega) = [[0,n]]$. $E(X(X-1)) = \sum_{k=0}^{n} P(X=k)k(k-1) = \sum_{k=0}^{n} P(X=k)k(k-1)$

$$\sum_{k=0}^{n} k(k-1) \binom{n}{k} (1-p)^{n-k} p^k = \sum_{k=2}^{n} k(k-1) \binom{n}{k} (1-p)^{n-k} p^k = \sum_{k=2}^{n} n(n-1) \binom{n-2}{k-2} (1-p)^{n-k} p^k = \sum_{k=2}^{n} n(n-1) \binom{n-2}{k-2} (1-p)^{n-k} p^k = \sum_{k=2}^{n} n(n-1) \binom{n-2}{k-2} (1-p)^{n-k} p^k$$

$$p)^{(n-2)-(k-2)}p^{k-2} \underbrace{=}_{l=k-2} n(n-1)p^2 \sum_{l=0}^{n-2} {n-2 \choose l} (1-p)^{(n-2)-l}p^l = n(n-1)p^2((1-p)+p)^{n-2} = n(n-1)p^2(1-p)^{n-2}$$

$$1)p^{2}1^{n-2} = n(n-1)p^{2}. \ E(X^{2}) = E(X(X-1)+X) = E(X(X-1)) + E(X). \ V(X) = E(X(X-1)) + E(X) - E(X)^{2} = n(n-1)p^{2} + np - (np)^{2} = n^{2}p^{2} - np^{2} + np - n^{2}p^{2} = np - np^{2} = np(1-p).$$

7.c Propriétés

Proposition.

Soit X une va réelle et $C \in \mathbb{R}$. V(X+C)=V(X). Soit X une va réelle et $\lambda \in \mathbb{R}$. $V(\lambda X)=\lambda^2 V(X)$.

Proposition (inegalité de Bienaymé-Tchebychev).

Soit X une va réelle et a > 0. $P(|X - E(X)| \ge a) \le \frac{V(X)}{a^2}$.

8 Covariance

8.a Définition

Définition.

Si X et Y sont deux va réelles, on appelle covariance de X et Y le réel Cov(X,Y) = E((X-E(X))(Y-E(Y))). En particulier, si X est une va réelle, Cov(X,X) = V(X).

Proposition.

Soit X et Y deux va réelles. Cov(X,Y) = E(XY) - E(X)E(Y).

Définition.

Soit X et Y deux va réelles.

On dit que X et Y sont non corrélées ssi Cov(X,Y)=0 i.e. E(XY)=E(X)E(Y). En particulier, si X et Y sont indépendantes alors X et Y sont non corrélées.

8.b Propriétés

Proposition.

Cov est une forme bilinéaire symétrique.

Proposition.

Soit X et Y deux va réelles. V(X+Y)=V(X)+2Cov(X,Y)+V(Y). En particulier, V(X+Y)=V(X)+V(Y) ssi X et Y sont non corrélées.

Proposition.

Soit $X_1, ..., X_n$ des va réelles.

Si $X_1,...,X_n$ sont 2 à 2 non corrélées, $V(X_1+...+X_n)=V(X_1)+...+V(X_n)$. En particulier, si $X_1,...,X_n$ sont 2 à 2 indépendantes, $V(X_1+...+X_n)=V(X_1)+...+V(X_n)$.