

Epreuve de Mathématiques A

Durée 4 h

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, d'une part il le signale au chef de salle, d'autre part il le signale sur sa copie et poursuit sa composition en indiquant les raisons des initiatives qu'il est amené à prendre.

L'usage de calculatrices est interdit.

À rendre avec la copie 1 feuille de papier millimétré.

AVERTISSEMENT

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies. En particulier, les résultats non justifiés ne seront pas pris en compte. <u>Les questions non correctement référencées ne seront pas notées</u>. Les candidats sont invités à encadrer les résultats de leurs calculs.

CONSIGNES:

- Composer lisiblement sur les copies avec un stylo à bille à encre foncée : bleue ou noire.
- L'usage de stylo à friction, stylo plume, stylo feutre, liquide de correction et dérouleur de ruban correcteur est interdit.
- Remplir sur chaque copie en MAJUSCULES toutes vos informations d'identification : nom, prénom, numéro inscription, date de naissance, le libellé du concours, le libellé de l'épreuve et la session.
- Une feuille, dont l'entête n'a pas été intégralement renseigné, ne sera pas prise en compte.
- Il est interdit aux candidats de signer leur composition ou d'y mettre un signe quelconque pouvant indiquer sa provenance.

Dans cette épreuve, les candidats sont invités à illustrer, s'ils le jugent nécessaire, leurs réponses avec un dessin.

Le sujet est composé de 2 exercices indépendants.

Problème I : Probabilités.

Ce problème est composé de 3 parties indépendantes, chacune d'elle étant l'étude d'un tirage différent dans un paquet de bonbons effectué par deux enfants Alice et Cyril.

Dans l'ensemble du problème :

- On dispose d'un paquet de bonbons qui contient uniquement des bonbons à la menthe et des nougats.
 - On suppose que l'emballage des bonbons les rend indiscernables.
 - Alice n'aime que les bonbons à la menthe et Cyril que les nougats.

Par ailleurs, on pourra utiliser les notations suivantes : pour tout entier $n \ge 1$,

- M_n est l'événement « le n-ième bonbon tiré est un bonbon à la menthe »;
- N_n est l'événement « le n-ième bonbon tiré est un nougat ».

Partie A

Dans cette partie, le paquet de bonbons contient 10 nougats et 10 bonbons à la menthe. Alice tire 1 bonbon dans le paquet et le garde dans sa main puis Cyril fait de même. On note :

- X_A la variable aléatoire égale à 1 si Alice tire un bonbon à la menthe et égale à 0 si Alice tire un nougat.
- \bullet X_C la variable aléatoire égale à 1 si Cyril tire un nougat et égale à 0 si Cyril tire un bonbon à la menthe.
 - 1. (a) Quelle est la loi de X_A ? On donnera son nom et la valeur du ou des paramètres.
 - (b) Donner les valeurs de l'espérance et la variance de X_A .
 - 2. (a) Déterminer $P(X_A = 0, X_C = 0)$.
 - (b) Déterminer la loi conjointe du couple (X_A, X_C) .
 - 3. En déduire la loi de X_C . Une justification est attendue.
 - 4. (a) Vérifier que la covariance $Cov(X_A, X_C)$ de X_A et X_C vaut $\frac{1}{76}$.
 - (b) Les variables aléatoires X_A et X_C sont-elles indépendantes?

Lorsqu'un enfant a tiré un bonbon qu'il n'aime pas, il le donne à l'autre enfant. On note alors :

- \bullet Y_A la variable aléatoire égale au nombre de bonbons à la menthe détenus par Alice après les dons éventuels;
- \bullet Y_C la variable aléatoire égale au nombre de nougats détenus par Cyril après les dons éventuels.
 - 5. Justifier que l'univers image $Y_A(\Omega)$ de Y_A est égal à $\{0; 1; 2\}$.
 - 6. (a) Quelle est la loi de $Y = Y_A + Y_C$?
 - (b) En déduire que la covariance $Cov(Y, Y_A)$ de Y et Y_A est nulle.
 - (c) Démontrer que $Cov(Y, Y_A) = V(Y_A) + Cov(Y_A, Y_C)$ où $Cov(Y_A, Y_C)$ est la covariance de Y_A et Y_C et $V(Y_A)$ la variance de Y_A .
 - (d) En déduire le signe de $Cov(Y_A, Y_C)$.

- 7. Justifier que $Y_A = 1 + X_A X_C$.
- 8. En déduire l'espérance de Y_A et démontrer que sa variance vaut $\frac{9}{19}$.
- 9. A l'aide des résultats de la question précédente, justifier que la loi de Y_A n'est pas une loi binomiale.

Partie B

Dans cette partie, le paquet de bonbons contient 10 nougats et 6 bonbons à la menthe. Alice tire dans le paquet des bonbons 1 par 1.

Si c'est un nougat, elle le remet dans le paquet.

Si c'est un bonbon à la menthe, elle le mange.

Les tirages s'arrêtent lorsque Alice a mangé deux bonbons.

On note:

- \bullet Z_1 la variable aléatoire égale au nombre de bonbons tirés au moment où Alice mange son premier bonbon;
- Z_2 la variable aléatoire égale au nombre de bonbons tirés après qu'Alice a mangé le premier bonbon et au moment où Alice mange son deuxième bonbon.
 - G_1 la fonction génératrice de Z_1
 - G_2 la fonction génératrice de Z_2 .
 - D_1 le domaine de définition de G_1 et D_2 celui de G_2 .

On admet que les variables aléatoires \mathbb{Z}_1 et \mathbb{Z}_2 sont indépendantes.

- 1. (a) Reconnaitre la loi de Z_1 . Une réponse argumentée est attendue. On précisera son nom, son ou ses paramètres, l'univers image $Z_1(\Omega)$ et les valeurs des probabilités $P(Z_1 = k)$ pour k dans $Z_1(\Omega)$.
 - (b) Donner l'espérance et la variance de Z_1 .
 - (c) Justifier que $\forall t \in D_1$, $G_1(t) = \frac{3}{5} \sum_{k=1}^{+\infty} \left(\frac{5}{8}t\right)^k$ et déterminer D_1 .
 - (d) Déterminer pour tout $t \in D_1$, l'expression de $G_1(t)$ à l'aide des fonctions usuelles.
 - (e) Déterminer la valeur de $G_1^{(k)}(0)$ pour tout $k \in \mathbb{N}^*$. Préciser $G_1(0)$.
- 2. Donner, sans les justifier, la loi de Z_2 , son espérance et sa variance, D_2 , $G_2(0)$ et $G_2^{(k)}(0)$ pour tout $k \in \mathbb{N}^*$.
- 3. On pose $Z = Z_1 + Z_2$ et on note G la fonction génératrice de Z.
 - (a) Que représente Z? Quelle est son espérance?
 - (b) Donner l'univers image $Z(\Omega)$ de Z.
 - (c) Exprimer pour tout $t \in D_1 \cap D_2$, G(t) en fonction de $G_1(t)$ et $G_2(t)$.
 - (d) A l'aide de la formule de Leibniz, exprimer pour tout entier n supérieur ou égal à 2, $G^{(n)}(0)$ en fonction de $G_1^{(k)}(0)$ et $G_2^{(k)}(0)$ pour des valeurs non nulles de k bien choisies.
 - (e) En déduire que pour tout entier n supérieur ou égal à 2, $G^{(n)}(0) = 3n! \left(\left(\frac{2}{3} \right)^{n-1} \left(\frac{5}{8} \right)^{n-1} \right)$
 - (f) En déduire P(Z = n) pour tout $n \in Z(\Omega)$.
 - (g) En utilisant la définition de l'espérance, retrouver la valeur de l'espérance de Z.

Partie C

Dans cette partie, la proportion des bonbons à la menthe dans le paquet est notée a et celle des nougats est notée c avec $(a, c) \in [0; 1]^2$.

Le tirage des bonbons dans le paquet répond au protocole suivant :

- o Les enfants tirent à tour de rôle un bonbon dans le paquet.
- o Lorsqu'un enfant tire un bonbon qu'il aime, il le mange, sinon il le remet dans le paquet.
 - o Les tirages s'arrêtent dès qu'un enfant a mangé un bonbon.
 - o Cyril effectue le premier tirage.

On note B la variable aléatoire égale à 1 si c'est Cyril qui a mangé un bonbon, égale à 0 si c'est Alice qui a mangé un bonbon et égale à -1 dans les autres cas.

- 1. Justifier que a + c = 1.
- 2. Soit n un entier naturel non nul. On note C_n l'événement : « Cyril a mangé un nougat au n-ème tirage ».
 - (a) Pour $p \in \mathbb{N}$, exprimer C_{2p+1} en fonction d'événements M_k et N_k (définis en introduction) bien choisis.
 - (b) En déduire $P(C_{2p+1})$ pour $p \in \mathbb{N}$.
 - (c) Que peut-on dire de C_{2p} et $P(C_{2p})$ pour $p \in \mathbb{N}^*$?
- 3. Etablir à l'aide des questions précédentes que $P(B=1)=\frac{c}{1-ac}.$
- 4. Démontrer de même que $P(B=0) = \frac{a^2}{1-ac}$.
- 5. En déduire la valeur P(B=-1). Interpréter ce résultat.
- 6. Est-il possible de posséder un paquet de bonbons tel que Alice et Cyril aient autant de chance l'un que l'autre de manger un bonbon?

Problème II : Algèbre.

Pour tout entier naturel n, on note $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes de degré inférieur ou égal à n.

Soit φ l'application définie sur $(\mathbb{R}_3[X])^2$ par :

$$\forall (P, Q) \in (\mathbb{R}_3[X])^2, \ \varphi(P, Q) = \sum_{k=0}^3 P(k)Q(k).$$

On considère également les polynômes $L_p(X) = \prod_{\substack{k=0\\k\neq p}}^3 \frac{X-k}{p-k}$ pour $p \in \{0\,;\,1\,;\,2\,;\,3\}$.

- 1. (a) Vérifier que $L_0(X) = -\frac{1}{6}(X-1)(X-2)(X-3)$.
 - (b) Ecrire de même $L_1(X)$, $L_2(X)$ et $L_3(X)$.
 - (c) Déterminer les valeurs de $L_p(k)$ pour tout $(p, k) \in [0; 3]^2$.
- 2. (a) Démontrer que φ est un produit scalaire sur $\mathbb{R}_3[X]$. On notera $\| \ \|$ la norme associée.
 - (b) Vérifier que (L_0, L_1, L_2, L_3) est une base orthonormée de $\mathbb{R}_3[X]$ pour ce produit scalaire.
 - (c) Soit Q un polynôme de $\mathbb{R}_3[X]$. Exprimer en fonction de Q, les coordonnées de Q dans la base (L_0, L_1, L_2, L_3) .
- 3. Déterminer une base orthonormée de $\mathbb{R}_1[X]$ pour le produit scalaire φ .

L'espace affine euclidien \mathbb{R}^2 est muni de sa structure euclidienne usuelle et d'un repère orthonormé $(O; \vec{i}, \vec{j})$.

On considère désormais 6 réels a, b, y_0, y_1, y_2 et y_3 et la droite \mathcal{D} d'équation y = ax + b. Pour tout $p \in [0; 3]$, on note M_p le point de coordonnées (p, y_p) , N_p le point de \mathcal{D} dont l'abscisse est p et d_p la longueur du segment $[M_pN_p]$.

On pose alors $\delta(a, b) = \sum_{p=0}^{3} d_p^2$.

L'objectif est de déterminer les valeurs de a et b (si elles existent) pour lesquelles $\delta(a, b)$ est minimale.

- 4. Faire, sur la copie, un schéma qui illustre les données précédentes.
- 5. Vérifier que $\delta(a,b) = \sum_{p=0}^{3} (y_p ap b)^2$.
- 6. (a) Démontrer qu'il existe un unique polynôme Q de $\mathbb{R}_3[X]$ dont le graphe passe par les points M_0, M_1, M_2 et M_3 . On pourra utiliser les polynômes L_p pour $p \in [0; 3]$.
 - (b) Démontrer que $\delta(a, b) = ||Q H||^2$ où H(X) = aX + b.
 - (c) En évoquant la distance d'un vecteur à un espace vectoriel bien choisi, en déduire l'existence d'un minimum pour δ et que celui-ci est atteint en un unique polynôme H_0 .
 - On précisera le lien entre Q et H_0 .

Dans la suite du sujet, on pose
$$\overline{Y} = \sum_{p=0}^{3} y_p$$
 et $\overline{XY} = \sum_{p=0}^{3} p y_p$.

L'objectif des 2 prochaines questions est d'obtenir l'expression de H_0 qui a été défini dans la question précédente de 2 façons différentes.

- 7. Première méthode.
 - (a) Exprimer H_0 en fonction de φ , Q et les polynômes obtenus dans la question 3.
 - (b) Déterminer H_0 en fonction de \overline{Y} et \overline{XY} .
- 8. Deuxière méthode.
 - (a) Justifier que la fonction δ possède un unique point critique à déterminer. On l'exprimera en fonction de \overline{Y} et \overline{XY} .
 - (b) Justifier qu'en ce point, la fonction δ atteint un minimum global.

Une application industrielle:

Un processus industriel nécessite que l'on contrôle au cours du temps t, exprimé en heures, l'évolution de la concentration C d'un produit dans une cuve car le processus doit être interrompu lorsque la concentration du produit devient inférieure à $\frac{1}{12}$.

Des études montrent que cette concentration C évolue au court du temps en suivant une loi de la forme $C(t) = \frac{k}{t+c}$, les valeurs des réels k et c étant inconnues.

On souhaite obtenir expérimentalement des valeurs de k et c.

Pour cela, on effectue des mesures qui ont donné les résultats suivants :

t	0	1	2	3
C(t)	1	$\frac{4}{7}$	$\frac{2}{5}$	$\frac{1}{3}$

- 9. (a) Placer dans un repère orthogonal les points M(t) de coordonnées $\left(t, \frac{1}{C(t)}\right)$ pour $t=0,\,1,\,2$ et 3.
 - On utilisera la feuille de papier millimétré fournie avec le sujet.
 - (b) Comment ces 4 points devraient-ils être positionnés? Est-ce le cas? Comment peut-on l'expliquer?
- 10. (a) Expliquer en quoi les questions 6. à 8. permettent en théorie de déterminer les valeurs de k et c.
 - (b) Déterminer les valeurs « expérimentales » que l'on obtient alors pour k et c.
 - (c) Au bout de combien de temps, l'industriel doit-il interrompre le processus ? On arrondira le résultat à l'entier le plus proche.

Fin de l'épreuve