
TP2: boucles

Le document de référence doit être apporté en TP. Les exercices 1 à 8, incontournables, doivent
être parfaitement traités en séance de TP. Les exercices suivants peuvent être traités en fin de séance
ou à la maison, pour s’entrâıner. Tous ces exercices sont susceptibles d’être posés en DS.

Créer un dossier ”TP2” dans votre répertoire personnel. Pour l’exercice 1, dans Pyzo, enregis-
trer un fichier nommé ”exo1.py” dans le dossier ”TP2”. Pour l’exercice 2, dans Pyzo, enregistrer
un fichier nommé ”exo2.py” dans le dossier ”TP2”..... Pour chaque exercice, le fichier python sera
régulièrement sauvegardé et éxécuté intégralement avec la commande ”Run file as script” du menu
Run (Ctrl+Shift+E). Les instructions d’affichage seront saisies sur le fichier python. Au fur et à me-
sure de l’avancée de l’exercice, les instructions devenant inutiles et gênantes pourront être désactivées
en utilisant le caractère #.

Exercice 1. Recopier et faire éxécuter la suite d’instructions suivante et examiner les affichages
afin de s’assurer d’avoir compris le fonctionnement.

i = 0
print(i)
i = 5
print(i)

i = 2 ∗ i
print(i)
i = i + 1
print(i)

Exercice 2. Recopier et faire éxécuter la suite d’instructions suivante et examiner les affichages
afin de s’assurer d’avoir compris le fonctionnement.

(x, y) = (2, 3)
print(x)
print(y)
print(x, y)

(x, y) = (y, x + y)
print(x, y)
(x, y) = (y, x)
print(x, y)

Exercice 3.

1. Faire afficher les carrés des entiers compris entre 1 et 100.

2. Faire afficher les carrés des entiers pairs compris entre 1 et 100 (en utilisant range(.., .., ..)).

3. Faire afficher les carrés des entiers impairs compris entre 1 et 100 (en utilisant range(.., .., ..)).

Exercice 4. Dans cet exercice, on donnera deux réponses à chaque question.

1. Faire afficher les triplets d’entiers (a, b, a× b) où a et b sont compris entre 1 et 9.

2. Faire afficher les triplets d’entiers (a, b, a× b) où a et b vérifient 1 ≤ a ≤ b ≤ 9.

Exercice 5. Déterminer le plus petit entier n tel que 3n > 123456789. Faire afficher cet entier.
On devra utiliser une boucle ”Tant que”.

Idée générale pour un algorithme de calcul de somme
Soit (xi)i∈I une famille finie de nombres. On souhaite calculer la somme des xi avec i ∈ I. Pour

cela, on va considérer les termes les uns après les autres et utiliser une variable s telle que, à chaque
étape de l’algorithme, s est la somme des termes considérés jusqu’à cette étape.

1



Variante
”initialisation avec un premier terme xi0”

Affecter à s la valeur xi0
Pour i variant dans I \ {i0} :

Réaffecter à s la valeur de s + xi.

Variante
”initialisation sans premier terme”

Affecter à s la valeur 0
Pour i variant dans I :

Réaffecter à s la valeur de s + xi.

Postcondition : s est la somme des xi avec i ∈ I.

Exercice 6.

1. Calculer
10∑
i=1

ii (somme des ii pour i variant de 1 à 10) et faire afficher le résultat. (On utilisera

la variante ”Initialisation avec un premier terme”.)

2. Calculer
∑

1≤i≤j≤10
ij (somme des ij avec i,j entiers tels que 1 ≤ i ≤ j ≤ 10) et faire afficher le

résultat. (On utilisera la variante ”Initialisation sans premier terme”.)

En python, float(”inf”) désigne le flottant +∞.

Idée générale pour un algorithme de minimisation
Soit (xi)i∈I une famille finie de nombres. On cherche à déterminer m le minimum des termes et

un indice j tel que xj est minimum (i.e. xj = m). Pour cela, on va considérer les termes les uns
après les autres et utiliser deux variables m et j telles que, à chaque étape de l’algorithme, m est le
minimum des termes considérés jusqu’à cette étape et j est un indice tel que xj = m.

Variante
”initialisation avec un premier terme xi0”

Affecter à m la valeur xi0
Affecter à j la valeur i0
Pour i variant dans I \ {i0} :

Si xi < m :
Réaffecter à m la valeur xi.
Réaffecter à j la valeur i.

Variante
”initialisation sans premier terme”

Affecter à m la valeur +∞
Affecter à j la valeur ”vide”
Pour i variant dans I :

Si xi < m :
Réaffecter à m la valeur xi.
Réaffecter à j la valeur i.

Postcondition : m est le minimum des termes et j est un indice tel que xj est minimum.

Exercice 7.

1. Exécuter l’instruction : from math import cos

2. Déterminer un élément j ∈ [[0, 99]] tel que cos(j) est minimum.

(On utilisera la variante ”initialisation avec un premier terme”.) Faire afficher j.

3. Déterminer un couple (k, l) d’entiers avec 0 ≤ k ≤ l ≤ 99 tel que cos(cos(k)l) est minimum.

(On utilisera la variante ”initialisation sans premier terme”.) Faire afficher (k, l).

Idée générale pour un algorithme de dénombrement
Soit E un ensemble fini dont certains éléments vérifient une certaine propriété et pas les autres.

On cherche à compter le nombre d’éléments de E vérifiant la propriété. Pour cela, on va considérer
les éléments de E les uns après les autres et utiliser un compteur, i.e. une variable c telle que, à
chaque étape, c est le nombre d’éléments considérés jusqu’à cette étape vérifiant la propriété.

On affecte à c la valeur 0
Pour x variant dans E :

Si x vérifie la propriété :
On réaffecte à c la valeur de c + 1.

Postcondition : c est le nombre d’éléments de E vérifiant la propriété.

Exercice 8. On appelle diviseur strict d’un entier naturel n tout diviseur de n appartenant à
[[2, n − 1]]. Ecrire une fonction nommée ”nbdivi” ayant pour argument n (entier) et retournant le
nombre de diviseurs stricts de n. Faire afficher nbdivi(12).

2



Exercice 9. On considère la suite (un)n∈N définie par u0 = 2.0 et pour tout n ∈ N, un+1 =
1
2(un + 2

un
).

1. Faire calculer u10 puis faire afficher le résultat.

Pour cela, utiliser une variable x que l’on initialisera à la valeur de u0 puis, pour k variant de
0 à 9, faire passer la valeur de x de uk à uk+1.

2. On admet que la suite (un)n∈N est décroissante et converge vers
√

2.

De plus 1.414 <
√

2 < 1.415.

Déterminer le plus petit entier n tel que un < 1.415 puis faire afficher n et un.

Pour cela on utilisera deux variables x et n et une boucle ”Tant que x >= 1.415” ayant pour
invariant ”x a pour valeur un”

Exercice 10. On appelle triplet pythagoricien tout triplet d’entiers naturels non nuls (a, b, c) tel
que a2 + b2 = c2. Faire afficher les triplets d’entiers pythagoriciens (a, b, c) tels que a ≤ b ≤ c ≤ 100.

Exercice 11.

1. Ecrire une fonction nommée valu ayant pour arguments deux entiers a et b (avec a ≥ 2 et
b ≥ 1) et retournant le plus grand entier naturel n tel que an divise b.

2. Faire afficher valu(2, 60), valu(3, 60), valu(2, 180), valu(3, 180), valu(2, 270), valu(3, 270).

Exercice 12.

1. Ecrire une fonction ”pgcd” ayant pour arguments deux entiers a et b tels que 1 ≤ a ≤ b et
renvoyant le plus grand commun diviseur de a et b. On utilisera une boucle ”Tant que”.

Faire afficher pgcd(126, 230).

2. Ecrire une fonction ”ppcm” ayant pour argument deux entiers a et b tels que 1 ≤ a ≤ b et
renvoyant le plus petit commun multiple (supérieur à 1) de a et b.

On utilisera une boucle ”Tant que”.

Faire afficher ppcm(126, 230).

Exercice 13. Ecrire une fonction nommée ”facto” prenant pour argument n (entier) et retournant
n!. Faire afficher facto(5).

Exercice 14.

1. Un entier n supérieur à 2 est premier ssi il n’admet pas de diviseur k ∈ [[2, n− 1]]. Ecrire une
fonction nommée ”prem” ayant en argument n (un entier supérieur à 2) et renvoyant True si
n est premier et False sinon.

2. Faire afficher les nombre premiers inférieurs à 1000.

3. Faire afficher le plus petit nombre premier n supérieur à 1000.

4. On appelle couple de nombres premiers jumeaux tous couple de nombres premiers de la forme
(n, n + 2). Ecrire une fonction ”jum” ayant pour argument un entier n supérieur à 2 et
renvoyant true si (n, n + 2) est un couple de nombres premiers jumeaux et False sinon.

5. Faire afficher les couples de nombres premiers jumeaux inférieurs à 1000.

6. Faire afficher le plus petit couple de nombres premiers jumeaux supérieurs à 1000.

7. Un entier n ≥ 2 est appelé nombre chanceux d’Euler ssi pour tout k ∈ [[0, n−2]], k2+k+n est
premier. Ecrire une fonction nommée ”chanceux” ayant pour argument n (un entier supérieur
à 2) et renvoyant True si n est un nombre chanceux d’Euler et False sinon.

8. Faire afficher les nombres chanceux d’Euler inférieurs à 100.

Exercice 15.

1. Soit n ≥ 2. On appelle diviseur strict de n tout diviseur de n compris entre 1 et n− 1. Ecrire
une fonction nommée ”nbdivi” ayant pour argument un entier n ≥ 2 et retournant le nombre
de diviseurs stricts de n. Faire afficher nbdivi(12).

2. Ecrire une fonction nommée ”sodivi” ayant pour argument un entier n ≥ 2 et retournant la
somme des diviseurs stricts de n. Faire afficher sodivi(12).

3



3. Soit n ≥ 2. On dit que n est dit parfait ssi n est égal à la somme de ses diviseurs stricts. Ecrire
une fonction nommée ”parfait” ayant pour argument un entier n ≥ 2 et retournant True si n
est parfait et False sinon.

4. Faire afficher les nombre parfaits inférieurs à 500.

5. Soit a ≥ 2 et b ≥ 2. On dit que a et b sont amicaux ssi la somme des diviseurs stricts de a est
égale à b et la somme des diviseurs stricts de b est égale à a. Ecrire une fonction ”ami” ayant
pour arguments deux entiers a ≥ 2 et b ≥ 2 et renvoyant True si a et b sont amicaux et False
sinon.

6. Faire afficher les couples (a, b) d’entiers amicaux tels que a ≤ b ≤ 300.

Exercice 16.

1. Ecrire une fonction nommée entrac ayant pour argument un entier naturel n et retournant le
plus grand entier naturel p tel que p2 ≤ n. On utilisera une boucle ”Tant que”. Faire afficher
entrac(200).

2. Ecrire une fonction nommée entracbis ayant pour argument un entier naturel n et retournant

le plus grand entier naturel p tel que
p∑

k=1

(2k − 1) ≤ n. On utilisera une boucle ”Tant que”.

Faire afficher entracbis(200).

Remarque : Pour tout p ∈ N,
p∑

k=1

(2k − 1) = p2 donc les deux fonctions aboutissent au même

résultat. Ceci dit, la seconde fonction est moins couteuse en calculs.

Exercice 17.

1. Ecrire une fonction nommée f ayant pour argument un entier n et renvoyant n
2 si n est pair

et 3n + 1 si n est impair.

2. Faire afficher f(14) et f(9).

3. A l’aide d’une boucle, faire calculer f(f(...f(f(︸ ︷︷ ︸
100fois

1000))...))

(l’entier obtenu en appliquant à 1000 la fonction f 100 fois de suite).

Faire afficher le résultat.

Exercice 18. En utilisant une boucle ”Tant que”, déterminer le plus petit entier n ∈ N∗ tel que le
reste de la division euclidienne de 2n par 999 soit égal à 1. Faire afficher cet entier.

Exercice 19. On considère la suite de Fibonacci définie par récurrence double par u0 = 0, u1 = 1
et pour tout n ∈ N, un+2 = un+1 + un. Faire calculer u100 puis faire afficher le résultat.

Pour cela, utiliser un couple de variables (x, y) que l’on initialisera à la valeur de (u0, u1) puis,
pour k variant de 0 à 98, faire passer la valeur de (x, y) de (uk, uk+1) à (uk+1, uk+2).

4


