TP2: boucles

Le document de référence doit étre apporté en TP. Les exercices 1 a 8, incontournables, doivent
étre parfaitement traités en séance de TP. Les exercices suivants peuvent étre traités en fin de séance
ou a la maison, pour s’entrainer. Tous ces exercices sont susceptibles d’étre posés en DS.

Créer un dossier ”TP2” dans votre répertoire personnel. Pour ’exercice 1, dans Pyzo, enregis-
trer un fichier nommé ”exol.py” dans le dossier ”TP2”. Pour ’exercice 2, dans Pyzo, enregistrer
un fichier nommé ”exo2.py” dans le dossier ”TP2”..... Pour chaque exercice, le fichier python sera
régulierement sauvegardé et éxécuté intégralement avec la commande ”Run file as script” du menu
Run (Ctrl+Shift+E). Les instructions d’affichage seront saisies sur le fichier python. Au fur et & me-
sure de 'avancée de I'exercice, les instructions devenant inutiles et génantes pourront étre désactivées
en utilisant le caractere #.

Exercice 1. Recopier et faire éxécuter la suite d’instructions suivante et examiner les affichages
afin de s’assurer d’avoir compris le fonctionnement.

t=0 1=2%1
print(i) print(i)
i=5 i=1i+1
print(i) print(i)

Exercice 2. Recopier et faire éxécuter la suite d’instructions suivante et examiner les affichages
afin de s’assurer d’avoir compris le fonctionnement.

(z,y) = (2,3) (z,y) = (y,x +y)
print(z) print(z,y)
print(y) (z,9) = (y, )
print(x,y) print(x,y)

Exercice 3.

1. Faire afficher les carrés des entiers compris entre 1 et 100.
2. Faire afficher les carrés des entiers pairs compris entre 1 et 100 (en utilisant range(.., .., ..)).

3. Faire afficher les carrés des entiers impairs compris entre 1 et 100 (en utilisant range(.., ..,..)).

Exercice 4. Dans cet exercice, on donnera deux réponses a chaque question.

1. Faire afficher les triplets d’entiers (a,b,a x b) ot a et b sont compris entre 1 et 9.
2. Fuaire afficher les triplets d’entiers (a,b,a X b) ot a et b vérifient 1 < a <b<9.

Exercice 5. Déterminer le plus petit entier n tel que 3" > 123456789. Faire afficher cet entier.
On devra utiliser une boucle ”Tant que”.

Idée générale pour un algorithme de calcul de somme

Soit (z;);er une famille finie de nombres. On souhaite calculer la somme des x; avec i € I. Pour
cela, on va considérer les termes les uns apres les autres et utiliser une variable s telle que, a chaque
étape de ’algorithme, s est la somme des termes considérés jusqu’a cette étape.



Variante Variante

”initialisation avec un premier terme z;,” ”initialisation sans premier terme”
Affecter a s la valeur z;, Affecter a s la valeur 0
Pour i variant dans I\ {ig} : Pour i variant dans [ :

Réaffecter a s la valeur de s + ;. Réaffecter a s la valeur de s + x;.

Postcondition : s est la somme des x; avec 7 € 1.

Exercice 6.

10 ,
1. Calculer Y i* (somme des i* pour i variant de 1 a 10) et faire afficher le résultat. (On utilisera
i=1
la variante ”Initialisation avec un premier terme”.)
2. Calculer Y. i/ (somme des i/ avec i,j entiers tels que 1 < i < j < 10) et faire afficher le
1<i<;<10
résultat. (On utilisera la variante ”Initialisation sans premier terme”.)

En python, float(”inf”) désigne le flottant +o0.

Idée générale pour un algorithme de minimisation

Soit (x;);c; une famille finie de nombres. On cherche & déterminer m le minimum des termes et
un indice j tel que x; est minimum (i.e. z; = m). Pour cela, on va considérer les termes les uns
apres les autres et utiliser deux variables m et j telles que, a chaque étape de I'algorithme, m est le
minimum des termes considérés jusqu’a cette étape et j est un indice tel que z; = m.

Variante Variante
”initialisation avec un premier terme z;,” ”initialisation sans premier terme”
Affecter a m la valeur x;, Affecter a m la valeur +o0
Affecter a j la valeur ig Affecter a j la valeur ”vide”
Pour i variant dans I \ {igp} : Pour i variant dans [ :
Sixz;<m: Siz; <m:
Réaffecter a m la valeur z;. Réaffecter a m la valeur z;.
Réaffecter a j la valeur i. Réaffecter a j la valeur i.

Postcondition : m est le minimum des termes et j est un indice tel que x; est minimum.

Exercice 7.

1. Ezécuter 'instruction : from math import cos

2. Déterminer un élément j € [[0,99]] tel que cos(j) est minimum.

(On utilisera la variante "initialisation avec un premier terme”.) Faire afficher j.

3. Déterminer un couple (k,l) d’entiers avec 0 < k <1 <99 tel que cos(cos(k)l) est minimum.
(On utilisera la variante "initialisation sans premier terme”.) Faire afficher (k,l).

Idée générale pour un algorithme de dénombrement

Soit E un ensemble fini dont certains éléments vérifient une certaine propriété et pas les autres.
On cherche a compter le nombre d’éléments de E vérifiant la propriété. Pour cela, on va considérer
les éléments de E les uns apres les autres et utiliser un compteur, i.e. une variable c telle que, a
chaque étape, c est le nombre d’éléments considérés jusqu’a cette étape vérifiant la propriété.

On affecte a ¢ la valeur 0

Pour x variant dans F :

Si x vérifie la propriété :
On réaffecte a c la valeur de ¢ + 1.
Postcondition : ¢ est le nombre d’éléments de E vérifiant la propriété.

Exercice 8. On appelle diviseur strict d’un entier naturel n tout diviseur de n appartenant a
[[2,n — 1]]. Ecrire une fonction nommée “nbdivi” ayant pour argument n (entier) et retournant le
nombre de diviseurs stricts de n. Faire afficher nbdivi(12).



Exercice 9. On considere la suite (up)nen définie par ug = 2.0 et pour tout n € N, up41 =

1

1.

Un,
Faire calculer uig puis faire afficher le résultat.

Pour cela, utiliser une variable x que ’on initialisera a la valeur de ug puis, pour k variant de
0 a9, faire passer la valeur de x de uj & Upy1.

On admet que la suite (un)nen est décroissante et converge vers V2.

De plus 1.414 < /2 < 1.415.

Déterminer le plus petit entier n tel que u, < 1.415 puis faire afficher n et wuy,.

Pour cela on utilisera deux variables © et n et une boucle ”Tant que x >= 1.415" ayant pour
mvariant "x a pour valeur u,”

Exercice 10. On appelle triplet pythagoricien tout triplet d’entiers naturels non nuls (a,b,c) tel
que a® + b2 = 2. Faire afficher les triplets d’entiers pythagoriciens (a, b, c) tels que a < b < ¢ < 100.

Exercice 11.

1.

Ecrire une fonction nommée valu ayant pour arguments deux entiers a et b (avec a > 2 et
b > 1) et retournant le plus grand entier naturel n tel que a™ divise b.

2. Faire afficher valu(2,60), valu(3,60), valu(2,180), valu(3,180), valu(2,270), valu(3,270).

Exercice 12.

1.

Ecrire une fonction "pged” ayant pour arguments deuzx entiers a et b tels que 1 < a < b et
renvoyant le plus grand commun diviseur de a et b. On utilisera une boucle ”Tant que”.

Faire afficher pged(126,230).

Ecrire une fonction "ppem” ayant pour argument deux entiers a et b tels que 1 < a < b et
renvoyant le plus petit commun multiple (supérieur a 1) de a et b.

On utilisera une boucle ”Tant que”.

Faire afficher ppem(126,230).

Exercice 13. Ecrire une fonction nommée ”"facto” prenant pour argument n (entier) et retournant
n!l. Faire afficher facto(5).

Exercice 14.

1.

Un entier n supérieur a 2 est premier ssi il n’admet pas de diviseur k € [[2,n — 1]]. Ecrire une
fonction nommée “prem” ayant en argument n (un entier supérieur a 2) et renvoyant True si
n est premier et False sinon.

Faire afficher les nombre premiers inférieurs a 1000.

3. Fuaire afficher le plus petit nombre premier n supérieur a 1000.

4. On appelle couple de nombres premiers jumeaux tous couple de nombres premiers de la forme

(n,n + 2). Ecrire une fonction "jum” ayant pour argument un entier n supérieur a 2 et
renvoyant true si (n,n + 2) est un couple de nombres premiers jumeaux et False sinon.

5. Faire afficher les couples de nombres premiers jumeauz inférieurs a 1000.

Faire afficher le plus petit couple de nombres premiers jumeaux supérieurs a 1000.

7. Un entier n > 2 est appelé nombre chanceuz d’Euler ssi pour tout k € [[0,n—2]], k2 +k+n est

8.

premier. Ecrire une fonction nommée ”chanceux” ayant pour argument n (un entier supérieur
a 2) et renvoyant True sin est un nombre chanceux d’Euler et False sinon.

Faire afficher les nombres chanceuzr d’Euler inférieurs a 100.

Exercice 15.

1.

2.

Soit n > 2. On appelle diviseur strict de n tout diviseur de n compris entre 1 et n — 1. Ecrire
une fonction nommée "nbdivi” ayant pour argument un entier n > 2 et retournant le nombre
de diviseurs stricts de n. Faire afficher nbdivi(12).

Ecrire une fonction nommée "sodivi” ayant pour argument un entier n > 2 et retournant la
somme des diviseurs stricts de n. Faire afficher sodivi(12).



3. Soitn > 2. On dit que n est dit parfait ssin est égal a la somme de ses diviseurs stricts. Ecrire
une fonction nommée "parfait” ayant pour argument un entier n > 2 et retournant True si n
est parfait et False sinon.

4. Faire afficher les nombre parfaits inférieurs a 500.

5. Soita > 2 etb>2. On dit que a et b sont amicauz ssi la somme des diviseurs stricts de a est
égale a b et la somme des diviseurs stricts de b est €gale a a. Fcrire une fonction “ami” ayant
pour arguments deux entiers a > 2 et b > 2 et renvoyant True si a et b sont amicaux et False
sinon.

6. Faire afficher les couples (a,b) d’entiers amicauz tels que a < b < 300.

Exercice 16.

1. Ecrire une fonction nommée entrac ayant pour argument un entier naturel n et retournant le
plus grand entier naturel p tel que p> < n. On utilisera une boucle ”Tant que”. Faire afficher
entrac(200).

2. Ecrire une fonction nommée entracbis ayant pour argument un entier naturel n et retournant
p

le plus grand entier naturel p tel que > (2k — 1) < n. On utilisera une boucle ”Tant que”.

k=1
Faire afficher entracbis(200).

P
Remarque : Pour tout p € N, Y (2k — 1) = p? donc les deuz fonctions aboutissent au méme
k=1
résultat. Ceci dit, la seconde fonction est moins couteuse en calculs.

Exercice 17.

1. Ecrire une fonction nommée f ayant pour argument un entier n et renvoyant 5 sin est pair
et 3n+ 1 si n est impair.

2. Faire afficher f(14) et f(9).
3. A Uaide d’une boucle, faire calculer f(f(...f(f(1000))...))
—_——
100 fois
(Uentier obtenu en appliquant a 1000 la fonction f 100 fois de suite).
Faire afficher le résultat.

Exercice 18. En utilisant une boucle ”Tant que”, déterminer le plus petit entier n € N* tel que le
reste de la division euclidienne de 2™ par 999 soit égal a 1. Fuaire afficher cet entier.

Exercice 19. On considére la suite de Fibonacci définie par récurrence double par ug =0, u; = 1
et pour tout n € N, up 19 = Unt1 + un. Faire calculer uigo puis faire afficher le résultat.

Pour cela, utiliser un couple de variables (x,y) que l'on initialisera a la valeur de (ug,u1) puis,
pour k variant de 0 a 98, faire passer la valeur de (z,y) de (ug, ug+1) ¢ (Ukt1, Ugt2)-



