
TP5: récursivité, châınes de caractères

Le document de référence doit être apporté en TP. Les exercices 1 à 3, incontournables, doivent
être parfaitement traités en séance de TP. Les exercices suivants peuvent être traités en fin de séance
ou à la maison, pour s’entrâıner. Tous ces exercices sont susceptibles d’être posés en DS.

Créer un dossier ”TP5” dans votre répertoire personnel. Pour l’exercice 1, dans Pyzo, enregis-
trer un fichier nommé ”exo1.py” dans le dossier ”TP5”. Pour l’exercice 2, dans Pyzo, enregistrer
un fichier nommé ”exo2.py” dans le dossier ”TP5”..... Pour chaque exercice, le fichier python sera
régulièrement sauvegardé et éxécuté intégralement avec la commande ”Run file as script” du menu
Run (Ctrl+Shift+E). Les instructions d’affichage seront saisies sur le fichier python. Au fur et à me-
sure de l’avancée de l’exercice, les instructions devenant inutiles et gênantes pourront être désactivées
en utilisant le caractère #.

Donnée : n (un entier naturel).
Calcul récursif de n! :
Premier cas : n = 0. Le calcul de n! retourne 1 (car 0! = 1)
Second cas : n ≥ 1. Le calcul de n! retourne le résultat du calcul de (n− 1)! multiplié par
n (car n! = (n− 1)!× n).

Fonction récursive ”facto” ayant pour argument n (entier naturel) et retournant n! :

def facto(n) :
if n==0 :

return(1)
else :

return(facto(n− 1) ∗ n)

Exemple.

Exercice 1 (exponentiations).

Données : x (un nombre) et n (un entier naturel).
Calcul récursif de xn näıf :
Premier cas : n = 0. Le calcul näıf de xn retourne 1 (car x0 = 1).
Second cas : n = 1. Le calcul näıf de xn retourne x (car x1 = x).
Troisième cas : n ≥ 2. Le calcul näıf de xn retourne le résultat du calcul näıf de xn−1

multiplié par x (car xn = xn−1 × x)

Question 1. Ecrire une fonction récursive ”exponaive” ayant pour arguments x (nombre) et n
(entier naturel) et retournant xn calculé näıvement. Faire afficher exponaive(2, 10).

Données : x (un nombre) et n (un entier naturel).
Calcul récursif de xn rapide :
Premier cas : n = 0. Le calcul rapide de xn retourne 1 (car x0 = 1).
Second cas : n = 1. Le calcul rapide de xn retourne x (car x1 = x).
Toisième cas : n ≥ 2. On pose q = n//2 et y = x× x.
Premier sous-cas : n pair. Le calcul rapide de xn retourne le résultat du calcul rapide de yq
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(car xn = x2q = (x2)q = yq).
Second sous-cas : n impair. Le calcul rapide de xn retourne le résultat du calcul rapide de yp

multiplié par x (car xn = x2q+1 = (x2)q × x = yq × x).

Question 2. Ecrire une fonction récursive ”exporapide” ayant pour arguments x (nombre) et n
(entier naturel) et retournant xn calculé par rapidemment. Faire afficher exporapide(2, 10).

Pour tout n ∈ N∗, le calcul näıf de xn nécessite n − 1 multiplications. Pour tout n ∈ N,
notons f(n) le nombre de multiplications nécessaires au calcul rapide de xn. f(1) = 0 et,
pour tout q ∈ N∗, f(2q) = 1 + f(q) (car pour calculer x2q, il faut 1 multiplication pour
calculer y = x×x puis f(q) multiplications pour calculer yq). Donc on voit par récurrence
que pour tout p ∈ N, f(2p) = p donc, en posant n = 2p, f(n) = log2(n). On peut montrer
que, pour tout entier n suffisamment grand, f(n) est de l’ordre de grandeur de log2(n)
donc f(n) est beaucoup plus petit que n− 1 donc le calcul rapide de xn nécessite beaucoup
moins de multiplications que le calcul näıf de xn.

Remarque.

Exercice 2 (Recherche dichotomique).
Dans cet exercice, le terme tableau désigne une liste.

Données :
t un tableau de nombres trié
# Pour tout indices i et j, i ≤ j ⇒ t[i] ≤ t[j] donc, par contraposée, t[i] > t[j]⇒ i > j
[[a, b]] un intervalle d’indices
# [[a, b]] est un intervalle d’entiers inclus dans l’ensemble des indices
x un nombre.

Problème :
Rechercher x parmi t[a], ..., t[b] et retourner un indice k ∈ [[a, b]] tel que t[k] = x si il existe un

tel indice, et retourner None sinon.

Algorithme récursif de recherche dichotomique :
Premier cas : a ≤ b.

# Idée de la dichotomie : découper [[a, b]] en deux moitiés
Considèrons m = (a + b)//2
# m indice au plus proche du milieu de a et b
Premier sous-cas : x < t[m].

La recherche dichotomique de x parmi t[a], ..., t[b] retourne :
le résultat de la recherche dichotomique de x parmi t[a], ..., t[m− 1].
# car pour tout k ∈ [[a, b]], t[k] = x⇒ k ∈ [[a,m− 1]]
# car t[k] = x⇒ t[k] < t[m]⇒ k < m

Second sous-cas : t[m] < x.
La recherche dichotomique de x parmi t[a], ..., t[b] retourne :
le résultat de la recherche dichotomique de x parmi t[m + 1], ..., t[b]
# car pour tout k ∈ [[a, b]], t[k] = x⇒ k ∈ [[m + 1, b]]
# car t[k] = x⇒ t[m] < t[k]⇒ m < k

Troisième sous-cas : t[m] = x.
La recherche dichotomique de x parmi t[a], ..., t[b] retourne m.

Second cas : b > a.
La recherche dichotomique de x parmi t[a], ..., t[b] retourne None
# car [[a, b]] est vide.

Question 1. Ecrire une fonction récursive nommée ”rechdicho” ayant pour arguments t (tableau de
nombres trié), a et b (entiers tels que [[a, b]] est un intervalle d’indices) et x (nombre) et retournant
un indice k ∈ [[a, b]] tel que t[k] = x si il existe un tel indice, et retournant None sinon.
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Question 2. Ecrire une fonction nommée ”rechdichoprinc” ayant pour arguments t (tableau de
nombres trié) et x (nombre) et retournant un indice k tel que t[k] = x si il existe un tel in-
dice, et retournant None sinon. Cette fonction devra appeler la fonction ”rechdicho”. Faire afficher
rechdichoprinc([0, 2, 6, 12, 15, 19, 25, 32, 40], 7) et rechdichoprinc([0, 2, 6, 12, 15, 19, 25, 32, 40], 25).

Question 3. On note f(n) le nombre d’opérations //2 effectuées pour une recherche dichotomique
dans un tableau de longueur n, dans le pire des cas (ie au maximum). On voit que f(1) = 1 et pour
tout n ∈ N, f(2n) = 1 + f(n) (car pour une recherche dichotomique dans un tableau de longueur
2n, 1 opération //2 permet de se ramener dans le pire des cas à une recherche dichotomique dans
un tableau de longueur n).

1. Déterminer f(2), f(22), f(23), f(24).

2. Soit p ∈ N. Exprimer f(2p) en fonction de p, sans justification.

3. On considère n = 2p. Exprimer f(n) en fonction de n.

Dans le pire des cas, le nombre d’opérations nécessaires à effectuer une recherche dicho-
tomique dans un tableau de longueur n est de l’ordre de log2(n). On dit que la complexité
dans le pire des cas est logarithmique en ordre de grandeur.

Remarque.

Pour n grand, log2(n) est beaucoup plus petit que n. Donc, pour un grand tableau de
nombres trié, l’algorithme de recherche dichotomique est beaucoup plus efficace (i.e. beau-
coup moins couteux en opérations) que l’algorithme de recherche séquentielle.

Remarque.

Question 4. Ecrire une fonction itérative nommée ”rechdichoite” ayant pour arguments t (tableau
de nombres trié) et x (nombre) et retournant un indice k tel que t[k] = x si il existe un tel indice, et
retournant None sinon. Cette fonction utilisera des variables a et b et une boucle ”Tant que a ≤ b”’
de sorte que la propriété I :”[[a, b]] est un intervalle d’indices et pour tout indice k, t[k] = x ⇒
k ∈ [[a, b]]” est un invariant de boucle. Faire afficher rechdichoite([0, 2, 6, 12, 15, 19, 25, 32, 40], 7) et
rechdichoite([0, 2, 6, 12, 15, 19, 25, 32, 40], 25).

Question 5. Donner un variant de la boucle ”Tant que a ≤ b”, sans justifier. Que peut-on en
déduire ?

Exercice 3. Recopier et faire éxécuter la suite d’instructions suivante et examiner les affichages
afin de s’assurer d’avoir compris le fonctionnement.

c = ”Il est grand”
print(c)
n = len(c)
print(n)

print(c[0])
print(c[1])
print(c[2])
print(c[n− 1])

Exercice 4. Ecrire une fonction ”comptage” ayant pour arguments une châıne de caractères c et
un caractère d et retournant le nombre de caractères dans c qui sont égaux à d.

Faire afficher comptage(”Ceci est un essai.”, ”e”).

Soit c une chaine de caractère. On appelle sous-châıne de c toute chaine formée de caractères
c[i], c[i + 1], ..., c[k] avec i et k des indices de c tels que i ≤ k.

Soit i un indice de c. On appelle sous-châıne de c débutant à l’indice i toute chaine de caractères
c[i], c[i + 1], ..., c[k] avec k un indice de c tels que i ≤ k.

Exercice 5 (Recherche d’un facteur dans un texte).
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1. Ecrire une fonction rechposmot(c, i,m) ayant pour arguments c (chaine de caractères), i (in-
dice de c) et m (chaine de caractère telle que i+ p ≤ n où p et n sont les longueurs de m et c)
et retournant True ssi m est une sous-châıne de c débutant à l’indice i, et False sinon. Faire
afficher rechposmot(”Il est grand”,4,”’est”) et rechposmot(”Il est grand”,3,”est”).

2. Ecrire une fonction rechmot(c,m) ayant arguments c et m (châınes de caractères) et retour-
nant True si m est une sous-châıne de c, et False sinon. rechmot ne devra pas faire appel à
rechposmot, mais au lieu de cela on copiera la majeure partie du corps de rechposmot dans le
corps de rechmot. Faire afficher rechmot(”Il est grand”,”est”) et rechmot(”Il est grand”,”test”).

Exercice 6 (Tours de Hanöı). On dispose d’assiettes de largeurs 2 à 2 distinctes. On appelle tour
de Hanöı toute pile d’assiettes dont toute assiette, sauf la plus basse, est moins large que l’assiette
sur laquelle elle est posée. Une tour de Hanöı est représentée par la liste dont les termes sont les
largeurs des assiettes de la pile disposées par ordre décroissant de sorte que le premier terme de la
liste est la largeur de l’assiette la plus basse et le dernier terme est la largeur de l’assiette la plus
haute.

Question 1. Affecter aux variables a et b les listes [5, 3, 1] et [9, 7, 4, 2] qui représentent des tours
de Hanöı. Faire afficher a et b.

Si l est une liste, x = l.pop() permet de supprimer le dernier terme de la liste l tout en affectant
à x la valeur de ce terme.

Question 2. Recopier et faire éxécuter la suite d’instructions suivante et examiner les affichages
afin de s’assurer d’avoir compris le fonctionnement.

l = [12, 9, 6, 3, 2, 1, 0]
print(l)
x = l.pop()

print(l)
print(x)

Déplacement élémentaire :

Question 3. Ecrire une fonction ”de” ayant prenant en arguments a, b (deux listes représentant
des tours de Hanöı p0 et p1 telle que l’assiette la plus haute de p0 est moins large que l’assiette la
plus haute de p1) et qui enlève l’assiette en haut de la pile p0 puis la remet au dessus de la pile p1
(effet de bord). Exécuter l’instruction de(a, b). Faire afficher a et b.

On appelle déplacement de certaines d’assiettes sur une pile toute suite de déplacements élémentaires
ne concernant que ces assiettes à l’issue de laquelle ces assiettes se retrouvent sur la pile.

Déplacement particulier :

On souhaite définir une fonction nommée ”dp” ayant pour argument a, b, c (des listes représentant
des tours de Hanöı p0,p1,p2 avec p1 et p2 vides) et déplacant toutes les assiettes de p0 sur p2 (effet
de bord).

Pour atteindre cet objectif, on va considérer un déplacement moins particulier.
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Déplacement moins particulier :

On souhaite définir une fonction nommée ”dmp” ayant pour arguments a, b, c (des listes représentant
des tours de Hanöı p0,p1,p2) et n (entier naturel tel que p0 possède au moins n assiettes et les n
assiettes les plus hautes de p0 sont moins larges que les assiettes de p1 et p2) et déplacant les n
assiettes les plus hautes de p0 sur p2 (effet de bord)

Définition récursive du déplacement moins particulier :

Pour effectuer un déplacement moins particulier, si il y a des assiettes à déplacer :

Question 4. Ecrire la fonction récursive ”dmp”. La fonction ”dmp” devra faire appel à la fonc-
tion ”de”. Puis écrire la fonction ”dp”. Affecter auc variables k,l,m les listes [3, 2, 1, 0], [], [] qui
représentent des tours de Hanöı p0,p1,p2 avec p1 et p2 vides. Affecter à la variable tours la valeur
[k, l,m]. Faire afficher tours. Remarque importante : [k, l,m] est la liste des références aux valeurs
de k, l,m de sorte que si les listes k, l,m sont modifiées alors tours le sera également. Afin de vi-
sualiser, ajouter l’instruction print(tours) dans le corps de la fonction ”dmp” juste après l’appel à
la fonction ”de”. Faire éxécuter dp(i, j, k).

Déplacement général :
On souhaite écrire une fonction dg ayant pour arguments a,b,c (listes représentant des tours de

Hanöı p0,p1,p2) et déplacant toutes les assiettes sur la pile p2 (effet de bord).

Pour atteindre cet objectif, on va considérer un déplacement plus général.

Déplacement plus général :
On souhaite écrire une fonction dpg ayant pour arguments a,b,c (listes représentant des tours de

Hanöı p0,p1,p2) et n0,n1,n2 (entiers naturels tels que les piles p0,p1,p2 possèdent au moins n0,n1,n2
assiettes et, en considérant les n0 assiettes les plus hautes de p0, les n1 assiettes les plus hautes de
p1 et les n2 assiettes les plus hautes de p2, les assiettes considérées sont plus larges que les autres)
et déplaçant les n0 assiettes les plus hautes de p0, les n1 assiettes les plus hautes de p1 et les n2
assiettes les plus hautes de p2 sur la pile p2 (effet de bord)

Question 5. Ecrire une fonction nommée largeur ayant pour arguments a (liste représentant une
tour de Hanöı p) et n (entier naturel non nul tel que p possède au moins n assiettes) et retour-
nant la largeur de l’assiette la plus basse parmi les n assiettes les plus hautes de p. Faire afficher
largeur([15, 12, 9, 7, 6, 3, 2], 3).

Question 6. Ecrire une fonction nommée ”argmax” ayant pour arguments a,b,c (listes représentant
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des tours de Hanöı p0,p1,p2) et n0,n1,n2 (entiers naturels non tous nuls tels que les piles p0,p1,p2
possèdent au moins n0,n1,n2 assiettes) retournant l’indice j défini de la manière suivante :

Si n0 6= 0, on considère largeur(a, n0). Si n1 6= 0, on considère largeur(b, n1). Si n2 6= 0, on
considère largeur(c, n2). Parmi les largeurs considérées, on recherche la largeur maximum M et on
pose j = 0 si M = largeur(a, n0), j = 1 si M = largeur(b, n1) et j = 2 si M = largeur(c, n2).

On complètera :

|def argmax(a,b,c,n0,n1,n2) :
| | if n0 !=0 :
| | | M=...
| | | j=...
| | | if n1 !=0 and ... :
| | | | M=...
| | | | j=...
| | | if n2 !=0 and ... :
| | | | M=...
| | | | j=...

| | elif n1 !=0 :
| | | M=...
| | | j=...
| | | if n2 !=0 and ... :
| | | | M=
| | | | j=
| | else :
| | | M=
| | | j=...
| | return(j)

Définition récursive du déplacement plus général :

Pour effectuer un déplacement plus général vers une pile cible, si il y a des assiettes à déplacer :
Premier cas : l’assiette à déplacer la plus large est déjà sur la pile cible.

On déplace les assiettes à déplacer sauf la plus large sur le pile cible.
Second cas : l’assiette à déplacer la plus large n’est pas sur la pile cible.

On appelle pile intermédaire la pile qui n’est
ni la pile contenant l’assiette à déplacer la plus large, ni la pile cible.

-on commence par déplacer toutes les assiettes à déplacer sauf la plus large
sur la pile intermédaire

-puis on déplace l’assiette à déplacer la plus large sur la pile cible
-puis on déplace toutes les assiettes à déplacer sauf la plus large,
de la pile intermédiaire vers la pile cible.

Question 7. Ecrire la fonction ”dpg” de manière récursive. La fonction ”dpg” devra faire appel aux
fonctions ”argmax”, ”de” et ”dmp”. Puis écrire la fonction ”dg”. Affecter aux variables k,l,m les
listes [6, 3, 0],[4, 2],[5, 1] qui représentent des tours de Hanöı. Affecter à la variable tours la valeur
[k, l,m]. Faire afficher tours. Afin de visualiser, ajouter l’instruction print(tours) dans le corps de la
fonction ”dpg” juste après chaque instruction appellant la fonction ”de”. Faire éxécuter dg(k, l,m).
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