TP5: récursivité, chaines de caracteres

Le document de référence doit étre apporté en TP. Les exercices 1 a 3, incontournables, doivent
étre parfaitement traités en séance de TP. Les exercices suivants peuvent étre traités en fin de séance
ou a la maison, pour s’entrainer. Tous ces exercices sont susceptibles d’étre posés en DS.

Créer un dossier ”TP5” dans votre répertoire personnel. Pour ’exercice 1, dans Pyzo, enregis-
trer un fichier nommé ”exol.py” dans le dossier ”TP5”. Pour 'exercice 2, dans Pyzo, enregistrer
un fichier nommé ”exo2.py” dans le dossier ”TP5”..... Pour chaque exercice, le fichier python sera
régulierement sauvegardé et éxécuté intégralement avec la commande ”Run file as script” du menu
Run (Ctrl+Shift+E). Les instructions d’affichage seront saisies sur le fichier python. Au fur et & me-
sure de 'avancée de I'exercice, les instructions devenant inutiles et génantes pourront étre désactivées
en utilisant le caractere #.

Exemple.

Donnée : n (un entier naturel).
Calcul récursif de n! :
Premier cas : n = 0. Le calcul de n! retourne 1 (car 0! = 1)

Second cas : n > 1. Le calcul de n! retourne le résultat du calcul de (n — 1)! multiplié par
n (car n! = (n —1)! x n).

Fonction récursive ”facto” ayant pour argument n (entier naturel) et retournant n! :

def facto(n) :
if n==0:
return(1)
else :

return(facto(n — 1) x n)

Exercice 1 (exponentiations).

Données : © (un nombre) et n (un entier naturel).

Calcul récursif de x™ naif :

Premier cas : n = 0. Le calcul naif de ™ retourne 1 (car 2° =1).

Second cas : n = 1. Le calcul naif de 2™ retourne x (car x' = x).

Troisiéme cas : n > 2. Le calcul naif de ™ retourne le résultat du calcul naif de x™
multiplié par x (car 2™ = 2" ' x x)

Question 1. FEcrire une fonction récursive ”exponaive” ayant pour arguments x (nombre) et n
(entier naturel) et retournant x™ calculé naivement. Faire afficher exponaive(2,10).

Données : © (un nombre) et n (un entier naturel).

Calcul récursif de =™ rapide :

Premier cas : n = 0. Le calcul rapide de z" retourne 1 (car 2° = 1).

Second cas : n = 1. Le calcul rapide de x™ retourne x (car v* = z).

Toisiéme cas : m > 2. On pose g =n//2 et y == X x.

Premier sous-cas : n pair. Le calcul rapide de x™ retourne le résultat du calcul rapide de y?



(car " = 221 = (2%)9 = y9).
Second sous-cas : n impair. Le calcul rapide de x™ retourne le résultat du calcul rapide de P
multiplié par x (car 3" = 2?9 = (22)I x x = y9 x x).

Question 2. Ecrire une fonction récursive "exporapide” ayant pour arguments x (nombre) et n
(entier naturel) et retournant ™ calculé par rapidemment. Faire afficher exporapide(2,10).

Remarque.

Pour tout n € N*, le calcul naif de x™ mécessite n — 1 multiplications. Pour tout n € N,
notons f(n) le nombre de multiplications nécessaires au calcul rapide de z™. f(1) =0 et,
pour tout ¢ € N*, f(2q) = 1+ f(q) (car pour calculer x4, il faut 1 multiplication pour
calculer y = x x x puis f(q) multiplications pour calculer y?). Donc on voit par récurrence
que pour tout p € N, f(2P) = p donc, en posant n = 2P, f(n) = loga(n). On peut montrer
que, pour tout entier n suffisamment grand, f(n) est de l'ordre de grandeur de loga(n)
donc f(n) est beaucoup plus petit que n — 1 donc le calcul rapide de x™ nécessite beaucoup
moins de multiplications que le calcul naif de z™.

Exercice 2 (Recherche dichotomique).
Dans cet exercice, le terme tableau désigne une liste.

Données :

t un tableau de nombres trié

# Pour tout indices i et j, i < j = t[i]| < t[j] done, par contraposée, tli] > t[j] =i > j
[[a,b]] un intervalle d’indices

# [[a,b]] est un intervalle d’entiers inclus dans l’ensemble des indices

x un nombre.

Probléme :
Rechercher x parmi ta], ..., t[b] et retourner un indice k € [[a,b]] tel que t[k] = x si il existe un
tel indice, et retourner None sinon.

Algorithme récursif de recherche dichotomique :
Premier cas : a <b.
# Idée de la dichotomie : découper [[a,b]] en deuz moitiés
Considérons m = (a+b)//2
# m indice au plus proche du milieu de a et b
Premier sous-cas : x < t[m].
La recherche dichotomique de x parmi tlal, ..., t[b] retourne :
le résultat de la recherche dichotomique de x parmi t[a], ..., t[m — 1].
# car pour tout k € [[a,b]], t}k] = x = k € [[a,m — 1]]
# car tlk] = x = tk] < t[m] =k <m
Second sous-cas : t{m] < x.
La recherche dichotomique de x parmi t[a], ..., t[b] retourne :
le résultat de la recherche dichotomique de x parmi tim + 1], ..., t[b]
# car pour tout k € [[a,b]], t[k]| =x =k € [[m + 1,b]]
# car tlk] = x = t[m] < t[k] = m < k
Troisiéme sous-cas : tfm] = x.

La recherche dichotomique de x parmi tlal, ..., t[b] retourne m.
Second cas : b > a.
La recherche dichotomique de x parmi tla], ..., t[b] retourne None

# car [[a,b]] est vide.

Question 1. Ecrire une fonction récursive nommée “rechdicho” ayant pour arguments t (tableau de
nombres trié), a et b (entiers tels que [[a,b]] est un intervalle d’indices) et x (nombre) et retournant
un indice k € [[a, b]] tel que t[k] = x si il existe un tel indice, et retournant None sinon.



Question 2. Ecrire une fonction nommée “rechdichoprinc” ayant pour arguments t (tableau de
nombres trié) et x (nombre) et retournant un indice k tel que tlk] = x si il existe un tel in-
dice, et retournant None sinon. Cette fonction devra appeler la fonction “rechdicho”. Faire afficher
rechdichoprinc([0,2,6,12,15,19,25,32,40],7) et rechdichoprinc([0,2,6,12,15,19, 25, 32,40], 25).

Question 3. On note f(n) le nombre d’opérations //2 effectuées pour une recherche dichotomique
dans un tableau de longueur n, dans le pire des cas (ie au mazimum). On voit que f(1) =1 et pour
tout n € N, f(2n) = 1+ f(n) (car pour une recherche dichotomique dans un tableau de longueur
2n, 1 opération //2 permet de se ramener dans le pire des cas a une recherche dichotomique dans
un tableau de longueur n).

1. Déterminer f(2), f(22), f(23), f(2%).
2. Soit p € N. Ezprimer f(2P) en fonction de p, sans justification.

3. On considére n = 2P. Ezprimer f(n) en fonction de n.
Remarque.

Dans le pire des cas, le nombre d’opérations nécessaires a effectuer une recherche dicho-
tomique dans un tableau de longueur n est de l'ordre de loga(n). On dit que la complexité
dans le pire des cas est logarithmique en ordre de grandeur.

Remarque.

Pour n grand, loga(n) est beaucoup plus petit que n. Donc, pour un grand tableau de
nombres trié, l'algorithme de recherche dichotomique est beaucoup plus efficace (i.e. beau-
coup moins couteuzr en opérations) que l’algorithme de recherche séquentielle.

Question 4. Ecrire une fonction itérative nommée “rechdichoite” ayant pour arguments t (tableau
de nombres trié) et x (nombre) et retournant un indice k tel que t[k] = = si il existe un tel indice, et
retournant None sinon. Cette fonction utilisera des variables a et b et une boucle ”Tant que a < b”’
de sorte que la propriété I :”[[a,b]] est un intervalle d’indices et pour tout indice k, t[k] = © =
k € [[a,b]]” est un invariant de boucle. Faire afficher rechdichoite(]0,2,6,12,15,19,25,32,40],7) et
rechdichoite(]0,2,6,12,15,19, 25, 32, 40], 25).

Question 5. Donner un variant de la boucle "Tant que a < b”, sans justifier. Que peut-on en
déduire ?

Exercice 3. Recopier et faire éxécuter la suite d’instructions suivante et examiner les affichages
afin de s’assurer d’avoir compris le fonctionnement.

c="Ilest grand” print(c[0])
print(c) print(c[1])
n = len(c) print(c[2])
print(n) print(c[n — 1))

Exercice 4. Ecrire une fonction ”comptage” ayant pour arguments une chaine de caractéres c et
un caractére d et retournant le nombre de caractéres dans ¢ qui sont égauz a d.
Faire afficher comptage(” Ceci est unessai.”,”e”).

Soit ¢ une chaine de caractere. On appelle sous-chaine de ¢ toute chaine formée de caracteres

cli], c[i + 1], ..., c[k] avec i et k des indices de ¢ tels que i < k.
Soit ¢ un indice de c¢. On appelle sous-chaine de ¢ débutant a 'indice ¢ toute chaine de caracteres
cli], c[i + 1], ..., c[k] avec k un indice de ¢ tels que ¢ < k.

Exercice 5 (Recherche d’un facteur dans un texte).



1. Ecrire une fonction rechposmot(c,i, m) ayant pour arguments ¢ (chaine de caractéres), i (in-
dice de c¢) et m (chaine de caractére telle que i+p < n ot p et n sont les longueurs de m et c)
et retournant True ssi m est une sous-chaine de ¢ débutant a l'indice i, et False sinon. Faire
afficher rechposmot(”1l est grand”,4,”’est”) et rechposmot(”Il est grand”,3,”est” ).

2. Ecrire une fonction rechmot(c, m) ayant arguments ¢ et m (chaines de caractéres) et retour-
nant True si m est une sous-chaine de c, et False sinon. rechmot ne devra pas faire appel a
rechposmot, mais au lieu de cela on copiera la majeure partie du corps de rechposmot dans le
corps de rechmot. Faire afficher rechmot(”Il est grand”,”est”) et rechmot(”Il est grand”, "test” ).

Exercice 6 (Tours de Hanol). On dispose d’assiettes de largeurs 2 a 2 distinctes. On appelle tour
de Hanoi toute pile d’assiettes dont toute assiette, sauf la plus basse, est moins large que l’assiette
sur laquelle elle est posée. Une tour de Hanoi est représentée par la liste dont les termes sont les
largeurs des assiettes de la pile disposées par ordre décroissant de sorte que le premier terme de la
liste est la largeur de l'assiette la plus basse et le dernier terme est la largeur de [’assiette la plus
haute.

Question 1. Affecter aux variables a et b les listes [5,3,1] et [9,7,4,2] qui représentent des tours
de Hanoi. Faire afficher a et b.

Si | est une liste, xz = l.pop() permet de supprimer le dernier terme de la liste | tout en affectant
a x la valeur de ce terme.

Question 2. Recopier et faire éxécuter la suite d’instructions suivante et examiner les affichages
afin de s’assurer d’avoir compris le fonctionnement.

I =[12,9,6,3,2,1,0] print(])
print(l) print(z)
z = Lpop()

Déplacement élémentaire :

= e .-L.i.
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Question 3. FEcrire une fonction "de” ayant prenant en arguments a,b (deuz listes représentant
des tours de Hanoi pg et py telle que ’assiette la plus haute de pg est moins large que l’assiette la
plus haute de p1) et qui enléve l'assiette en haut de la pile po puis la remet au dessus de la pile py
(effet de bord). Exécuter l'instruction de(a,b). Faire afficher a et b.

On appelle déplacement de certaines d’assiettes sur une pile toute suite de déplacements élémentaires
ne concernant que ces assiettes a l'issue de laquelle ces assiettes se retrouvent sur la pile.
Déplacement particulier :

Po P, P, Py P, P,
On souhaite définir une fonction nommée ”dp” ayant pour argument a,b, ¢ (des listes représentant

des tours de Hanoi pg,p1,p2 avec pi et py vides) et déplacant toutes les assiettes de py sur pa (effet
de bord).

Pour atteindre cet objectif, on va considérer un déplacement moins particulier.



Déplacement moins particulier :

n
“' ._-_i
pg pl pZ pg p1 pz

On souhaite définir une fonction nommée "dmp” ayant pour arguments a, b, ¢ (des listes représentant
des tours de Hanoi po,p1,p2) et n (entier naturel tel que py posséde au moins n assiettes et les n
assiettes les plus hautes de py sont moins larges que les assiettes de py et pa) et déplacant les n
assiettes les plus hautes de py sur ps (effet de bord)

Définition récursive du déplacement moins particulier :

Pour effectuer un déplacement moins particulier, si il y a des assiettes a déplacer :

n In-l
— g B ===
Po P, P, P, P, P,
.-L.-Li A .-.ii
pg p;|_ pz pg pl pZ

Question 4. Ecrire la fonction récursive “dmp”. La fonction "dmp” devra faire appel a la fonc-
tion ”de”. Puis écrire la fonction 7dp”. Affecter auc variables k,l,m les listes [3,2,1,0], [], [ qui
représentent des tours de Hanoi po,p1,p2 avec py et ps vides. Affecter a la variable tours la valeur
[k,l,m]. Faire afficher tours. Remarque importante : [k,l,m] est la liste des références aux valeurs
de k,l,m de sorte que si les listes k,l,m sont modifiées alors tours le sera également. Afin de vi-
sualiser, ajouter l'instruction print(tours) dans le corps de la fonction 7dmp” juste aprés Uappel a
la fonction 7de”. Faire éxécuter dp(i, j, k).

Déplacement général :
On souhaite écrire une fonction dg ayant pour arguments a,b,c (listes représentant des tours de
Hanoi po,p1,p2) et déplacant toutes les assiettes sur la pile pa (effet de bord).

Pour atteindre cet objectif, on va considérer un déplacement plus général.

Déplacement plus général :

On souhaite écrire une fonction dpg ayant pour arguments a,b,c (listes représentant des tours de
Hanoi po,p1,p2) et n0,nl,n2 (entiers naturels tels que les piles p0,pl,p2 possédent au moins n0,nl,n2
assiettes et, en considérant les n0 assiettes les plus hautes de pg, les nl assiettes les plus hautes de
p1 et les n2 assiettes les plus hautes de po, les assiettes considérées sont plus larges que les autres)
et déplacant les n0 assiettes les plus hautes de py, les nl assiettes les plus hautes de p1 et les n2
assiettes les plus hautes de pa sur la pile pa (effet de bord)

Question 5. Ecrire une fonction nommée largeur ayant pour arguments a (liste représentant une
tour de Hanoi p) et n (entier naturel non nul tel que p posséde au moins n assiettes) et retour-
nant la largeur de [’assiette la plus basse parmi les n assiettes les plus hautes de p. Faire afficher
largeur([15,12,9,7,6,3,2],3).

Question 6. Ecrire une fonction nommée ”argmax” ayant pour arguments a,b,c (listes représentant



des tours de Hanoi py,p1,p2) et n0,nl,n2 (entiers naturels non tous nuls tels que les piles py,p1,p2
possédent au moins n0,nl,n2 assiettes) retournant l'indice j défini de la maniére suivante :

Si n0 # 0, on considere largeur(a,n0). Si nl # 0, on considére largeur(b,nl). Sin2 # 0, on
considére largeur(c,n2). Parmi les largeurs considérées, on recherche la largeur maximum M et on
pose j =0 si M = largeur(a,n0), j =1 si M = largeur(b,nl) et j =2 si M = largeur(c,n2).

On complétera :

|def argmaz(a,b,c,n0,n1,n2) : | | elif n1!=0

] | if n0!=0 : | \ | M=.
M= o e

] | | j=... ] \ | if n2!1=0 and ... :
| | | if n1!=0 and ... : | \ | | M=
o M= o =

| | | | j=--. | | else

| | | if n2!/=0 and ... : ] \ | M=

o | M= o 1=

| | | | j=... | | return(j)

Définition récursive du déplacement plus général :

Pour effectuer un déplacement plus général vers une pile cible, si il y a des assiettes a déplacer :
Premier cas : Uassiette a déplacer la plus large est déja sur la pile cible.

On déplace les assiettes a déplacer sauf la plus large sur le pile cible.
Second cas : lassiette a déplacer la plus large n’est pas sur la pile cible.

On appelle pile intermédaire la pile qui n’est

nt la pile contenant ’assiette a déplacer la plus large, ni la pile cible.

-on commence par déplacer toutes les assiettes a déplacer sauf la plus large

sur la pile intermédaire

-puis on déplace l’assiette a déplacer la plus large sur la pile cible

-puis on déplace toutes les assiettes a déplacer sauf la plus large,

de la pile intermédiaire vers la pile cible.

Question 7. Ecrire la fonction "dpg” de maniére récursive. La fonction "dpg” devra faire appel aux
fonctions "argmax”, “de” et "dmp”. Puis écrire la fonction "dg”. Affecter aux variables k,l,m les
listes [6,3,0],[4,2],[5,1] qui représentent des tours de Hanoi. Affecter a la variable tours la valeur
[k,l,m]. Faire afficher tours. Afin de visualiser, ajouter l'instruction print(tours) dans le corps de la
fonction "dpg” juste aprés chaque instruction appellant la fonction "de”. Faire éxécuter dg(k,l,m).



