
Attention : lorsque l’ensemble de départ d’une fonction est donnée, il est inutile et même incorrect
d’en chercher le domaine de définition (on sait néanmoins que le domaine de définition contient
l’ensemble de départ).

Par exemple, si un énoncé spécifie ”Soit f : [1,+∞[→ R” il est inutile et même incorrect de
chercher le domaine de définition de f .

Attention, lorsqu’une fonction est constituée de la fonction racine carrée, il faut savoir rédiger la
justification par théorèmes opératoires que la fonction est dérivable sur l’ensemble de départ privé
de l’ensemble des points pour lesquels l’expression dans la racine carrée s’annule .

Par exemple :
”On considère f : [1,+∞[→ R définie par f(x) = 2

√
ln(x). Attention, la fonction racine carrée

n’est pas dérivable en 0. Pour tout x ∈]1,+∞[, ln(x) = 0 ⇔ x = 1. Donc, d’après les théorèmes

opératoires, f est dérivable sur ]1,+∞[ et, pour tout x ∈]1,+∞[, f ′(x) = 2
1
x

2
√

ln(x)
= 1

x
√

ln(x)
.”

Attention à bien justifier les inégalités en détail.
En particulier, justifier ”a1b1 < a2b2” par ”car 0 < a1 < a2 et 0 < b1 < b2” est insuffisant.
Justifier ”a1b1 < a2b2” par ”car a1 < a2 et b1 < b2” est insuffisant.
Exemple de justification suffisamment détaillée :
”1 < a < c < a+ 1 donc 0 < a < c < a+ 1 et 0 <

√
ln(a) <

√
ln(c) <

√
ln(a+ 1)

donc 0 < a
√
ln(a) < c

√
ln(c) < (a+ 1)

√
ln(a+ 1) donc 1

(a+1)
√

ln(a+1)
< 1

c
√

ln(c)
< 1

a
√

ln(a)
”

Attention à ne jamais oublier les quantificateurs.
Par exemple :
”Pour tout k ∈ [[2, n]], f(k + 1)− f(k) < 1

k
√

ln(k)
(en appliquant 2. à a = k ∈]1,+∞[)

donc
n∑

k=2

(f(k + 1)− f(k)) <
n∑

k=2

1

k
√

ln(k)
”

”Pour tout k ∈ [[3, n]], 1

k
√

ln(k)
< f(k)− f(k − 1) (en appliquant 2. à a = k − 1 ∈]1,+∞[)

donc
n∑

k=3

1

k
√

ln(k)
<

n∑
k=3

(f(k)− f(k − 1))”

Attention : ”
n∑

k=p

xk + yk” est incorrect (oubli de parenthèses), ”
n∑

k=p

(xk + yk)” est correct.

Par exemple :

”
n∑

k=2

f(k + 1)− f(k)” est incorrect (oubli de parenthèses), ”
n∑

k=2

(f(k + 1)− f(k))” est correct.

Attention, il faut connâıtre toutes les méthodes du cours, par exemple la méthode qui permet
de trouver un équivalent par encadrement.

Par exemple :
”Pour tout n ∈ [[3,+∞[[, f(n + 1) + C ≤ Sn ≤ f(n) + D et 2

√
ln(n) > 0 donc f(n+1)+C

2
√

ln(n)
≤

Sn

2
√

ln(n)
≤ f(n)+D

2
√

ln(n)
. Or f(n+1)+C

2
√

ln(n)
→

n→+∞
1 (car f(n + 1) + C ∼

n→+∞
2
√
ln(n)) et f(n)+D

2
√

ln(n)
→

n→+∞

1 (car f(n) + D ∼
n→+∞

2
√
ln(n)). Donc, d’après le théorème de convergence par encadrement,

Sn

2
√

ln(n)
→

n→+∞
1. Donc Sn ∼

n→+∞
2
√
ln(n)

Attention : il faut toujours énoncer et justifier en détail les limites de composées.
Par exemple, si on utilise la limite de composée ”e−x →

x→+∞
0”

il faut l’énoncer et la justifier par ”car −x →
x→+∞

−∞ et ey →
y→−∞

0”

Attention : lorsqu’on calcule l’image directe d’un intervalle par une fonction continue strictement
décroissante, il ne faut pas oublier d’ ”inverser les bornes”.

Par exemple, si f est continue strictement décoissante sur [1,+∞[ alors
”f([1,+∞[) =] lim

x→+∞
f(x), f(1)]” est correct

mais ”f([1,+∞[) = [f(1), lim
x→+∞

f(x)[” est incorrect.
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Attention : dans un exercice où une fonction f est itératrice d’une suite récurrence u = (un)n∈N
(ie pour tout n ∈ N, un+1 = f(un)) si on a étudié les variations de f et que l’on doit montrer
que pour tout n ∈ N, un ∈ I où I est un intervalle, alors il ne faut pas faire la démonstration par
récurrence mais il faut montrer que u0 ∈ I et I est stable par f (car la démonstration par récurrence
est plus longue que de montrer u0 ∈ I et I stable par f).

Attention, pour montrer qu’une fonction ϕ : I → R s’annule exactement une fois, il est plus effi-
cace d’utiliser le théorème de la bijection, qui permet de montrer simultanément l’existence et l’uni-
cité, et dans tous les cas d’intervalle I, plutôt que d’utiliser le théorème des valeurs intermédiaires,
qui ne permet de montrer que l’existence, et seulement dans le cas d’un intervalle du type I = [a, b].

Par exemple :
”Définissons ϕ : [1,+∞[→ R par ϕ(x) = f(x) − x. ϕ est strictement décroissante car somme

de deux fonctions strictement décroissantes. ϕ est continue par théorèmes opératoires. ϕ est conti-
nue strictement décroissante sur [1,+∞[ donc ϕ induit une bijection de [1,+∞[ dans ϕ([1,+∞[) =
] lim
x→+∞

ϕ(x), ϕ(1)] =]−∞, 1e ]. Or 0 ∈]−∞, 1e ]. Donc il existe un unique α ∈ [1,+∞[ tel que ϕ(α) = 0.

α est l’unique point fixe de f dans [1,+∞[.”

Attention, il faut connâıtre toutes les méthodes du cours, par exemple la méthode qui permet
de montrer qu’une suite récurrente converge vers un point fixe de la fonction itératrice en utilisant
l’inégalité des accroissement finis.

Par exemple :
”Pour tout x ∈ [1,+∞[, |f ′(x)| ≤ 1

e . Donc f est 1
e -lipschitzienne sur [1,+∞[. Pour tout n ∈ N,

|un+1 − α| = |f(un) − f(α)| ≤ 1
e |un − α|. Donc on voit par récurrence que pour tout n ∈ N,

|un − α| ≤ (1e )n|u0 − α|. Or (1e )n|u0 − α| →
n→+∞

0 car (1e )n →
n→+∞

0 car 0 ≤ 1
e < 1 car e > 1. Donc,

d’après le théorème de convergence par majoration de la distance, un →
n→+∞

α.”

Attention : pour appliquer la formule du binôme de Newton à deux matrices, il faut montrer que
celles-ci commutent pour ×.

Par exemple :
”A = 2I3 + B et 2I3 et B commutent pour × (car (2I3) × B = 2B = B × (2I3)) donc, d’après

la formule du binôme de Newton, An = (2I3 +B)n =
n∑

k=0

(
n
k

)
(2I3)

n−kBk.”

Attention : il est incorrect de diviser une matrice par un scalaire, par contre il est correct que
multiplier cette matrice par l’inverse de ce scalaire.

Par exemple ”−(A−3I3)2 ” est incorrect, par contre ”−1
2(A− 3I3)” est correct.

Attention, lorsqu’on multiplie une matrice par un scalaire, le scalaire est à gauche.
Par exemple : ”2n−kBk” est correct, mais ”Bk2n−k” est incorrect.

2


