Espaces vectoriels de dimension finie.

1. Un \mathbb{K} -espace vectoriel E est de dimension finie s'il admet une famille génératrice finie.

Théorème de la base extraite.

- Si E est non nul et de dimension finie, E admet au moins une base et toutes ses bases ont le même nombre de vecteurs. Dimension. Par convention $dim(\{\vec{0}\}) = 0$. Caractérisation des bases en dimension finie.
- 2. Dimension et base d'un espace vectoriel produit de deux espaces vectoriels de dimension finie non nulle. Base canonique et dimensions des espaces vectoriels usuels. Cas de \mathbb{C} .
- 3. Si E est non nul et de dimension finie n, coordonnées et matrice d'un vecteur dans une base. Isomorphismes entre \mathbb{K}^n et E, entre E et $\mathcal{M}_{n,1}(\mathbb{K})$. Matrice d'une famille de vecteurs dans une base.
- 4. Le rang d'une famille finie S de vecteurs d'un espace vectoriel quelconque est la dimensions de Vect(S). Propriétés. En dimension finie, calcul du rang à l'aide de la matrice des vecteurs de S dans une base.
- 5. Tout sous-espace vectoriel F de E est de dimension finie inférieure ou égale à n. dim(F) = n si, et seulement si F = E.

Définition de droite, plan, hyperplan.

Théorème de la base incomplète.

6. Si $B = (\vec{e}_1, ..., \vec{e}_k, \vec{e}_{k+1}, ..., \vec{e}_n)$ est une base de E alors $\text{Vect}(\vec{e}_1, ..., \vec{e}_k) \oplus \text{Vect}(\vec{e}_{k+1}, ..., \vec{e}_n) = E$.

Tout sous-espace vectoriel de E a un supplémentaire dans E.

Pour deux sous-espaces vectoriels F et G supplémentaires dans E, $\dim(F) + \dim(G) = \dim(E)$.

Caractérisation des supplémentaires à l'aide de la dimension.

Base de E adaptée à $F \oplus G$ (dans cet ordre) pour deux sous-espaces vectoriels supplémentaires non nuls de E.

7. Dimension de la somme de deux sous-espaces vectoriels en dimension finie : formule de Grassmann.

Applications linéaires en dimension finie.

E est un espace vectoriel de dimension finie $n \in \mathbb{N}^*$, de base $B = (\vec{e}_1, \vec{e}_2, \cdots, \vec{e}_n)$ et F un espace vectoriel non nul.

- 1. Si $u \in L(E, F)$, alors
 - i) $u(B) = (u(\vec{e}_1), u(\vec{e}_2), \dots, u(\vec{e}_n))$ engendre $\operatorname{Im}(u)$.
 - ii) u est surjective si et seulement si u(B) engendre F.
 - iii) u est injective si et seulement si u(B) est une famille libre de F.

Conséquences sur la comparaison des dimensions.

2. $u \in L(E, F)$ est bijective si et seulement si u(B) est une base de F.

Si u est un isomorphisme de E dans F, alors F est de dimension finie et dim(F) = dim(E) = n.

L'application $\mathbb{K}^n \to E$; $(x_1, \cdots, x_n) \mapsto \sum_{k=1}^n x_k \vec{e}_k$ est un isomorphisme, dépendant de la base B choisie.

En dimension finie, deux IK-espaces vectoriels E et F sont isomorphes si et seulement si dim(E) = dim(F).

Caractérisation des isomorphismes en dimension finie : si dim(E) = dim(F) = n, avec $n \in \mathbb{N}^*$, alors pour tout $u \in L(E, F)$, u est un isomorphisme si et seulement si u est injective si et seulement si u est surjective.

3. Si E est de dimension finie non nulle, $u \in L(E,F)$ est entièrement déterminée par l'image d'une base

 $B = (\vec{e_1}, \vec{e_2}, \dots, \vec{e_n})$ de E et l'application $L(E, F) \to F^n$; $u \mapsto B = (u(\vec{e_1}), u(\vec{e_2}), \dots, u(\vec{e_n}))$ est un isomorphisme.

4. Rang d'une application linéaire, définitions et propriétés.

Théorème du rang quand E et F sont de dimension finie.

Dans ce cas, pour $u \in L(E, F)$, $rg(u) = Mat_{B'}(u(B))$, où B est une base de E et B' une base de F.

5. Cas des formes linéaires. Equation d'un hyperplan dans une base de ${\cal E}$ en dimension finie non nulle.

Equations linéaires.

- 6. $u \in L(E, F)$ est entièrement déterminée par ses restrictions à deux sous-espaces vectoriels supplémentaires dans E. Forme géométrique du théorème du rang.
- 7. Homothéties, projections (projecteurs) et symétries vectorielles : définitions et propriétés.