MPSI-PCSI Lycée Buffon 2025-2026 TP 6 1

TP D'INFORMATIQUE 6
Récursivité

1 Exemple introductif

La programmation récursive se base sur le principe de 'appel récursif, c’est-a-dire ’appel d’une fonction dans sa propre
définition. Similairement & une preuve par récurrence, une fonction récursive doit contenir au moins un cas de base sans
appel récursif, et chaque appel récursif doit prendre un argument strictement inférieur & 'argument initial (pour un ordre
dit bien fondé, comme l'ordre usuel sur N).

L’exemple suivant montre comment la définition récursive de la factorielle se traduit directement en fonction récursive :

def fact(m):

if n==0:

return 1 #Cas de base
else:

return n*fact(n-1) #Appel recursif

1. Détailler au papier le calcul de fact(4) en déroulant la définition récursive.
2. Recopier la fonction fact en Python et vérifier que 'appel fact(4) renvoie le résultat prédit.

3. Ajouter la ligne print (n) au début du corps de la fonction fact et exécuter & nouveau fact (4). Observer que chaque
appel, initial et récursifs, produit un affichage, et que la valeur de n change d’un appel a l'autre.

4. Que devrait-il se passer si fact est appelée sur un entier strictement négatif 7 Tester.

2 Premieres applications de la récursivité

1. Ecrire une fonction récursive pged calculant le pged de deux entiers naturels a et b. On utilisera a%b le reste de la
division euclidienne de a par b.

2. Recopier la procédure suivante :

def afficher_ligne(n):
print('*' * n)

Elle permet d’afficher une ligne formée de n caractéres *, et on l'utilisera pour les questions suivantes.

(a) Ecrire une procédure récursive tracer_triangle prenant en argument un entier n et affichant un triangle formé
des lignes de longueur n,n —1,...

Ainsi, tracer_triangle(4) devra afficher :
Kokok ok
*ok ok

kk
*

(b) Ecrire une procédure récursive tracer_triangle2 similaire mais inversant le sens des lignes, de sorte & avoir la
pointe en haut.

3. (a) Ecrire une fonction u prenant en argument un flottant a et entier positif n et renvoyant le terme w,, de la suite

1 a
définie par récurrence comme ug = a et up11 = 3 (un +)
Un,
(b) Tester sur u(3,50), qui doit renvoyer 1.7320508075688772. Si le temps de calcul est trop long, interrompre la
console. Si chaque appel produit deux appels récursifs, le temps de calcul va croitre en 2", on parle de complexité
exponentielle. Le cas échéant, corriger ce comportement en n’utilisant qu’un seul appel récursif.

4. Ecrire une fonction récursive expo_rapide prenant en argument deux entiers naturels & et n et renvoyant k™ selon la
méthode de I'exponentiation rapide vue au TP précédent.

MPSI-

PCSI Lycée Buffon 2025-2026 TP 6 2

5.

6.

3

Ecrire une fonction récursive bin prenant en argument un entier naturel et renvoyant son écriture binaire sous forme
de liste de 0 et 1, le bit de poids faible étant en fin de liste. On utilisera le fait que le dernier bit de 1’écriture de n est
n%2, et que les autres bits forment I’écriture de n//2. Ainsi, bin(12) doit renvoyer [1,1,0,0]. La fonction renverra
la liste vide ([]1) sur 0.

(a) Ecrire une fonction fibo prenant en argument un entier positif n et renvoyant le n-iéme terme de la suite de
Fibonacci, définie par Fy = F1 =1 et F1o0 = F,, + Fq1.

(b) La fonction fibo utilisant deux appels récursifs a une complexité exponentielle. Obtenir une version de complexité
linéaire (on pourra utiliser une fonction auxiliaire récursive renvoyant deux termes consécutifs de la suite).

Recherche dichotomique

Dans cet exercice, on se propose d’écrire une version récursive de la recherche dichotomique dans un tableau trié. Pour éviter
le colit de création d’un sous-tableau a chaque appel récursif, nous allons utiliser une fonction auxiliaire récursive prenant
en argument les bornes entre lesquelles la recherche prend place.

1.

4

Ecrire une fonction récursive recherche_dicho_bornes prenant en argument une liste L, supposée triée, un élément
X, un entier a et un entier b et testant si x est dans L[a:b+1] (ie entre les indices a et b inclus), en utilisant le principe
de la recherche dichotomique.

Ainsi, avec 1 = [1, 3, 4, 6, 7, 10]:
recherche_dicho_bornes(l, 4, 0, 1) doit renvoyer False

recherche_dicho_bornes(l, 4, 0, 2) doit renvoyer True

. En déduire la fonction recherche_dicho prenant en argument une liste L triée et un élément x, et testant si x est dans

L.

Tours de Hano1i

Le probleme des tours de Hanoi se présente sous la forme de trois colonnes. Au départ, la premieére contient sept disques de
tailles distinctes, empilés par taille décroissante (le plus grand en bas). Les deux autres colonnes sont vides. On peut déplacer
un disque du sommet d’une colonne au sommet d’une autre colonne, mais seulement s’il ne recouvre pas un disque plus petit,
de facon a conserver I’empilement par taille décroissante. L’objectif est de déplacer tous les disques sur la troisieme colonne.

Ecrire une procédure hanoi affichant les instructions pour résoudre le probleme. On affichera n -> n' pour indiquer le
déplacement du sommet de la colonne n au sommet de la colonne n'.

Par exemple, si le probleme ne contenait que deux disques, la procédure devrait afficher :

1 ->2
1 ->3
2 >3

5

Flocon de Koch

L’objectif de cette partie est de tracer (une approximation finie de) la figure fractale du flocon de Koch. Nous allons utiliser
pour le tracer la bibliotheque turtle qui permet de déplacer un curseur tout en dessinant sa trajectoire. Nous utiliserons
les fonctions suivantes :

w oo

left, prenant en argument un angle en degrés et faisant tourner le curseur sur lui-méme de cet angle vers la gauche ;
right, similaire a la fonction précédente mais vers la droite ;

forward, faisant avancer le curseur de la distance donnée en argument ;

reset (), permet d’effacer un tracer afin d’en recommencer un.

Charger la bibliotheque turtle avec la ligne from turtle import *

Tracer un carré de coté 100.

Chercher sur Wikipedia la définition récursive de la courbe de Koch et du flocon de Koch. En déduire une fonction
flocon prenant en argument un entier n et une longueur [, et tracant ’approximation finie en n étapes du flocon de
Koch partant d’un triangle équilatéral de longueur [. On pourra tester avec les valeurs n = 4 et [= 200.

	Exemple introductif
	Premières applications de la récursivité
	Recherche dichotomique
	Tours de Hanoï
	Flocon de Koch

