MPSI-PCSI Lycée Buffon 2025-2026 TP 6 1

TP D)INFORMATIQUE 7
Algorithmes gloutons

1 Probléme du rendu de monnaie

On s’intéresse dans cette partie au probléme suivant : on cherche a rendre une certaine quantité en monnaie en utilisant
le plus petit nombre de pieces, sachant qu’on dispose d’une quantité illimitée de chaque piece.

1.1 Formalisation du probléeme

On appelle systéme un m—uplet d’entiers s = (s;)o<i<m vérifiant : 1 = so < 81 < -+ < 8,1, correspondant aux
valeurs des pieces (ou billets) en service.

Par exemple, pour le systéme en zone euro, le systéme est : (1,2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000)
si on prend en compte billets et pieces, exprimés en centimes d’euro.

Soit * € N, le montant a rendre. Une représentation de = dans ce systeme s est un m—uplet

m—1
k = (ki)o<icm vérifiant z = > k;s;. Autrement dit, k; est le nombre de pieces de valeur s; qui seront rendues.

=0
Pour épargner les poches des clients, on souhaite minimiser le poids de cette représentation, et donc le nombre de

pieces rendues :
m—1
wk)=> ki
i=0

Les systémes et les représentations seront donnés sous forme de liste, [3, 1, 4] est par exemple une représentation
de 30 dans le systeme [1, 3, 6].

1. Ecrire en Python une fonction est_un_systeme qui prend en argument une liste et qui renvoie True si ¢’est un
systeme et False sinon.

1.2 Implémentation gloutonne

Un algorithme glouton pour résoudre un probleme d’optimisation est un algorithme qui a chaque étape fait toujours
le choix qui semble & court terme le plus avantageux. Ici, I’algorithme glouton pour rendre une somme = > 0 consiste
a toujours rendre la piéce la plus grande possible. Par exemple avec le systéme s = (1, 2,5, 10, 50), 'algorithme rendra
27 en commencant par une piece de 10 (car 50 dépasserait la somme & rendre), puis encore 10, puis 5 puis 2, donnant
donc la représentation [0, 1, 1, 2, 0].

2. Ecrire une fonction glouton_monnaie prenant en argument la somme a rendre x et le systeme S, et renvoyant
la représentation de x dans S déterminée par 'algorithme glouton.

3. On souhaite obtenir une version récursive de cet algorithme glouton. Comme on ne peut pas efficacement faire
un appel récursif sur une sous-liste en Python (car chaque élément de cette sous-liste sera recopié depuis la liste
initiale), nous allons passer par une fonction auxiliaire prenant en argument supplémentaire le nombre de piéces
a prendre en compte dans le systeme.

(a) Ecrire une fonction glouton_monnaie_aux prenant en argument la somme a rendre x, le systéme S et un
entier i, et renvoyant la représentation selon ’algorithme glouton de x dans le systeme S [0 : i], c’est-a-dire
en n’utilisant que les i premieres valeurs du systeme S. Cette fonction devra étre récursive en 1.

(b) En déduire une fonction glouton_monnaie_rec donnant le méme résultat que la fonction glouton_monnaie,
mais en appelant la fonction glouton_monnaie_aux.

1.3 Systéme canonique

Un systéeme est dit canonique si 'algorithme glouton donne toujours la solution optimale, c’est-a-dire le nombre de
pieéces minimal.

4. Avant la réforme de 1971 introduisant un systéme décimal, le Royaume-Uni utilisait le systeme (1,3, 6,12, 24, 30).
Montrer que ce systéme n’est pas canonique.

5. Donne un systéme non canonique pour m = 3.

6. Justifier que tout systeme pour m = 2 est canonique.

Heureusement, on peut montrer que le systéeme monétaire de la zone euro est canonique.

MPSI-PCSI Lycée Buffon 2025-2026 TP 6 2

2 Réservation d’une salle

La salle Médiatheque du lycée est partagée entre plusieurs classes. Chacun des n cours i pouvant s’y dérouler est
caractérisé par une date de début d; et une date de fin f;. On souhaite que le maximum de cours ait lieu dans la salle,
deux cours ne pouvant avoir lieu en méme temps, leurs intervalles de temps devant donc étre disjoints.

Ainsi, on dit qu'un ensemble J C [0,n — 1] de cours forme une réservation valide si

Vi, j) € Ji#] = (di>f; ou fi<dy)
et le probléme est alors de trouver une réservation valide de plus grand cardinal possible.

Il serait possible de résoudre ce probléme par force brute : pour chaque partie J de [0,n — 1], on peut tester si elle
correspond & une réservation valide, et faire une recherche de maximum sur le cardinal des réservations valides ainsi
parcourues. Le probleme de cette approche est son coiit en temps : il y a 2" parties, donc les considérer une par une
engendrerait une complexité exponentielle, et en pratique un algorithme extrémement lent quand n devient grand.

Pour cette raison, nous cherchons plutot a résoudre ce probléme a ’aide d’un algorithme glouton. Il faut donc choisir
un critere sur lequel se baser pour sélectionner a chaque étape le cours a ajouter a la réservation. Le choix du bon
critere peut faire la différence entre un algorithme glouton optimal ou non.

2.1 Choix du critere glouton
On considere d’abord les 3 criteéres suivants :
e la durée du cours ;
e la date de début du cours ;
e le nombre d’intersections du cours avec un autre cours.

Pour chacun de ces criteéres, on obtient une stratégie gloutonne en triant les cours dans ’ordre croissant de ce critere,
puis a chaque étape en choisissant d’ajouter a la réservation le premier cours compatible avec les cours déja sélectionnés.

7. Pour chacune de ces stratégies, montrer par un exemple qu’elle ne donne pas forcément une solution optimale.

2.2 Implémentation
On considere a présent le critere de la date de fin du cours, dont on admet qu’il permet a ’algorithme glouton d’étre

optimal.

On veut alors implémenter cet algorithme en Python. On représente 1’entrée du probleme par une liste dont chaque
élément est un triplet composé de deux entiers correspondant aux dates de début et de fin du cours, et d’une chaine de
caractére qui identifie la classe, et on veut obtenir en sortie une liste de méme format contenant les cours sélectionnés
dans la réservation.

8. L’instruction list.sort (L, key=f) permet de trier la liste L selon la fonction £, de fagon a ce qu’apres exécution
de cette instruction, deux éléments consécutifs a et b de L vérifieront f(a) < f(b)
Ecrire la fonction f correspondant au critére donnant ’algorithme optimal.

9. Ecrire une fonction reservation_glouton implémentant 'algorithme glouton optimal.
10. Sachant qu’un tri peut se faire en (nlogn) opérations, estimer la complexité de I’algorithme glouton.
11. Démontrer que le critere des dates de fin de cours donne toujours une solution optimale.

12. Implémenter 'algorithme par force brute et vérifier qu’il donne des solutions de méme cardinal que 'algorithme
glouton optimal.

	Problème du rendu de monnaie
	Formalisation du problème
	Implémentation gloutonne
	Système canonique

	Réservation d'une salle
	Choix du critère glouton
	Implémentation

