
MPSI-PCSI Lycée Buffon 2025-2026 TP 6 1

TP D’INFORMATIQUE 7
Algorithmes gloutons

1 Problème du rendu de monnaie
On s’intéresse dans cette partie au problème suivant : on cherche à rendre une certaine quantité en monnaie en utilisant
le plus petit nombre de pièces, sachant qu’on dispose d’une quantité illimitée de chaque pièce.

1.1 Formalisation du problème
On appelle système un m−uplet d’entiers s = (si)0≤i<m vérifiant : 1 = s0 < s1 < · · · < sm−1, correspondant aux
valeurs des pièces (ou billets) en service.
Par exemple, pour le système en zone euro, le système est : (1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000)
si on prend en compte billets et pièces, exprimés en centimes d’euro.
Soit x ∈ N, le montant à rendre. Une représentation de x dans ce système s est un m−uplet

k = (ki)0≤i<m vérifiant x =
m−1∑
i=0

kisi. Autrement dit, ki est le nombre de pièces de valeur si qui seront rendues.

Pour épargner les poches des clients, on souhaite minimiser le poids de cette représentation, et donc le nombre de
pièces rendues :

w(k) =

m−1∑
i=0

ki

Les systèmes et les représentations seront donnés sous forme de liste, [3, 1, 4] est par exemple une représentation
de 30 dans le système [1, 3, 6].

1. Écrire en Python une fonction est_un_systeme qui prend en argument une liste et qui renvoie True si c’est un
système et False sinon.

1.2 Implémentation gloutonne
Un algorithme glouton pour résoudre un problème d’optimisation est un algorithme qui a chaque étape fait toujours
le choix qui semble à court terme le plus avantageux. Ici, l’algorithme glouton pour rendre une somme x > 0 consiste
à toujours rendre la pièce la plus grande possible. Par exemple avec le système s = (1, 2, 5, 10, 50), l’algorithme rendra
27 en commençant par une pièce de 10 (car 50 dépasserait la somme à rendre), puis encore 10, puis 5 puis 2, donnant
donc la représentation [0, 1, 1, 2, 0].

2. Écrire une fonction glouton_monnaie prenant en argument la somme à rendre x et le système S, et renvoyant
la représentation de x dans S déterminée par l’algorithme glouton.

3. On souhaite obtenir une version récursive de cet algorithme glouton. Comme on ne peut pas efficacement faire
un appel récursif sur une sous-liste en Python (car chaque élément de cette sous-liste sera recopié depuis la liste
initiale), nous allons passer par une fonction auxiliaire prenant en argument supplémentaire le nombre de pièces
à prendre en compte dans le système.

(a) Écrire une fonction glouton_monnaie_aux prenant en argument la somme à rendre x, le système S et un
entier i, et renvoyant la représentation selon l’algorithme glouton de x dans le système S [0 : i] , c’est-à-dire
en n’utilisant que les i premières valeurs du système S. Cette fonction devra être récursive en i.

(b) En déduire une fonction glouton_monnaie_rec donnant le même résultat que la fonction glouton_monnaie,
mais en appelant la fonction glouton_monnaie_aux.

1.3 Système canonique
Un système est dit canonique si l’algorithme glouton donne toujours la solution optimale, c’est-à-dire le nombre de
pièces minimal.

4. Avant la réforme de 1971 introduisant un système décimal, le Royaume-Uni utilisait le système (1, 3, 6, 12, 24, 30).
Montrer que ce système n’est pas canonique.

5. Donne un système non canonique pour m = 3.

6. Justifier que tout système pour m = 2 est canonique.
Heureusement, on peut montrer que le système monétaire de la zone euro est canonique.

MPSI-PCSI Lycée Buffon 2025-2026 TP 6 2

2 Réservation d’une salle
La salle Médiathèque du lycée est partagée entre plusieurs classes. Chacun des n cours i pouvant s’y dérouler est
caractérisé par une date de début di et une date de fin fi. On souhaite que le maximum de cours ait lieu dans la salle,
deux cours ne pouvant avoir lieu en même temps, leurs intervalles de temps devant donc être disjoints.
Ainsi, on dit qu’un ensemble J ⊂ J0, n− 1K de cours forme une réservation valide si

∀(i, j) ∈ J2, i 6= j ⇒ (di ≥ fj ou fi ≤ dj)

et le problème est alors de trouver une réservation valide de plus grand cardinal possible.

Il serait possible de résoudre ce problème par force brute : pour chaque partie J de J0, n − 1K, on peut tester si elle
correspond à une réservation valide, et faire une recherche de maximum sur le cardinal des réservations valides ainsi
parcourues. Le problème de cette approche est son coût en temps : il y a 2n parties, donc les considérer une par une
engendrerait une complexité exponentielle, et en pratique un algorithme extrêmement lent quand n devient grand.

Pour cette raison, nous cherchons plutôt à résoudre ce problème à l’aide d’un algorithme glouton. Il faut donc choisir
un critère sur lequel se baser pour sélectionner à chaque étape le cours à ajouter à la réservation. Le choix du bon
critère peut faire la différence entre un algorithme glouton optimal ou non.

2.1 Choix du critère glouton
On considère d’abord les 3 critères suivants :

• la durée du cours ;

• la date de début du cours ;

• le nombre d’intersections du cours avec un autre cours.

Pour chacun de ces critères, on obtient une stratégie gloutonne en triant les cours dans l’ordre croissant de ce critère,
puis à chaque étape en choisissant d’ajouter à la réservation le premier cours compatible avec les cours déjà sélectionnés.

7. Pour chacune de ces stratégies, montrer par un exemple qu’elle ne donne pas forcément une solution optimale.

2.2 Implémentation
On considère à présent le critère de la date de fin du cours, dont on admet qu’il permet à l’algorithme glouton d’être
optimal.

On veut alors implémenter cet algorithme en Python. On représente l’entrée du problème par une liste dont chaque
élément est un triplet composé de deux entiers correspondant aux dates de début et de fin du cours, et d’une chaîne de
caractère qui identifie la classe, et on veut obtenir en sortie une liste de même format contenant les cours sélectionnés
dans la réservation.

8. L’instruction list.sort(L, key=f) permet de trier la liste L selon la fonction f, de façon à ce qu’après exécution
de cette instruction, deux éléments consécutifs a et b de L vérifieront f(a) ≤ f(b)
Écrire la fonction f correspondant au critère donnant l’algorithme optimal.

9. Écrire une fonction reservation_glouton implémentant l’algorithme glouton optimal.

10. Sachant qu’un tri peut se faire en (n log n) opérations, estimer la complexité de l’algorithme glouton.

11. Démontrer que le critère des dates de fin de cours donne toujours une solution optimale.

12. Implémenter l’algorithme par force brute et vérifier qu’il donne des solutions de même cardinal que l’algorithme
glouton optimal.

	Problème du rendu de monnaie
	Formalisation du problème
	Implémentation gloutonne
	Système canonique

	Réservation d'une salle
	Choix du critère glouton
	Implémentation

