
MPSI-PCSI Lycée Buffon 2025-2026 DM1 1

DEVOIR MAISON D’INFORMATIQUE 1
Ensemble de Mandelbrot

Ce devoir maison est facultatif et non noté, et doit être pris comme une opportunité pour s’entrainer.
Vous pouvez déposer votre travail (réalisé sur machine) sur cahier de prepa avant le 5 janvier. N’hésitez
pas à me poser vos questions par mail (pompigne@crans.org) en cas de blocage.

1 Tracé de l’ensemble de Mandelbrot

Notre objectif est de tracer le célèbre ensemble fractal de Mandelbrot. Celui-ci est défini comme l’ensemble
des points z du plan complexe tels que la suite (un) définie par u0 = z, un+1 = u2

n + z a son module
borné par 2.

Pour savoir si un point donné est dans l’ensemble, nous allons donc calculer les termes de cette suite et
regarder si leur module dépasse 2. Bien entendu, on ne peut pas ainsi vérifier l’infinité des termes de la
suite, nous allons donc nous limiter aux N premiers termes de la suite, avec N suffisamment grand pour
avoir une bonne approximation de l’ensemble.

1. Importer les bibliothèques numpy sous le nom np et matplotlib.pyplot sous le nom plt.

2. Définir une variable N de valeur 200.

3. Écrire une fonction appartient prenant en argument un nombre complexe z, renvoyant True si
les N premiers termes de la suite (un) correspondante sont tous de module inférieur ou égal à 2,
et False sinon.

Indication : Un nombre complexe se se note en Python sous la forme a + bj, où a et b sont des
flottants, et se manipule exactement comme un nombre flottant en Python. On peut obtenir son
module en utilisant la fonction abs.

Vous pouvez tester votre fonction appartient sur les complexes suivants :

• 0 ; 1j ; -1+0.25j doivent renvoyer True
• 1 ; -1 + 1j ; -0.75+0.2j doivent renvoyer False

4. Nous allons à présent tracer l’ensemble de Mandelbrot entre les abscisses a < b, et les ordonnées
c < d. Pour cela, on divise chacun de ces intervalles en 1000 avec la fonction linspace de numpy,
puis pour chaque point (x, y) du rectangle ainsi formé, on considère le complexe x + y ∗ 1j et on
l’ajoute aux points à tracer si appartient renvoie True dessus.

Écrire une fonction afficher_mandelbrot prenant en argument les quatre bornes a, b, c, d

et réalisant ce tracé. On utilisera une instruction de la forme plt.plot(X, Y, ".", ms = 0.2)

pour tracer les points sous la forme de ronds fins, qu’on précédera par plt.axis(’equal’) pour
avoir la même échelle en abscisses et ordonnées. On n’oubliera pas de terminer la fonction par un
appel plt.show().

afficher_mandelbrot(-2,1,-1,1) doit donner la figure suivante (au bout d’un certain temps) :

et afficher_mandelbrot(-0.75,-0.74,0.1,0.11) doit donner la figure suivante :



MPSI-PCSI Lycée Buffon 2025-2026 DM1 2

2 Tracé en couleur

L’affichage sans couleur de l’ensemble de Mandelbrot présente déjà une structure extrêmement riche,
mais on peut souhaiter le détailler encore en colorant les points en dehors de l’ensemble selon la vitesse
à laquelle leur suite (un) associée dépasse 2 en module.
Pour cela, on définit le rang d’un complexe z comme le premier entier k < N tel que |uk| > 2, ou N si
un tel k n’existe pas. Il ne reste plus qu’à afficher chaque point avec une couleur donnée par son rang.

1. Écrire une fonction rang prenant en argument un nombre complexe et renvoyant son rang.

Cette fonction doit en particulier passer les tests suivants :

• 3 est de rang 0
• 2 est de rang 1
• 1 est de rang 2
• −0.75 + 0.2j est de rang 15
• −1 + 0.25j est de rang N

2. Pour obtenir un rendu plus propre et détaillé, nous allons afficher une image plutôt que des points.
Cette image sera représentée par un tableau numpy de h lignes et l colonnes. Le pixel img[i][j]
de l’image img est la case située à la ligne i et la colonne j dans l’image. Attention, les lignes
seront affichées de haut en bas, et les colonnes de gauche à droite, de sorte que :

• img[0][0] est le pixel en haut à gauche de l’image, qui doit donc correspondre au point de
coordonnées (a, d) ;

• img[h-1][0] doit correspondre au point (a, c) ;
• img[0][l-1] doit correspondre au point (b, d) ;
• img[h-1][l-1] doit correspondre au point (b, c).

Déterminer par des formules affines l’abscisse et l’ordonnée du point correspondant au pixel sur la
ligne i et la colonne j.

3. Écrire une fonction afficher_mandelbrot_couleur prenant les mêmes arguments que afficher_mandelbrot,
et affichant l’image où chaque pixel a la valeur du rang du point correspondant. Pour cela :

• on prendra h = 1000 et l = int(h*(b-a)/(d-c)) ;
• on créera un tableau numpy img de h lignes et l colonnes contenant initialement des zéros avec
img = np.zeros((h,l)) ;

• on remplira chaque case de img avec le rang du point correspondant ;
• on affichera img avec plt.imshow(img, cmap = "hot") suivi de plt.show().

afficher_mandelbrot_couleur(-2,1,-1,1) doit afficher la figure suivante :

et afficher_mandelbrot_couleur(-0.748,-0.744,0.102,0.106) doit afficher :

4. Afficher votre partie préférée de l’ensemble de Mandelbrot.


	Tracé de l'ensemble de Mandelbrot
	Tracé en couleur

