$TD\ n^o\ 22\ de\ Physique$ Thermodynamique - Machines thermiques

On rappelle que l'on peut utiliser, si besoin, les expressions de l'entropie

pour les gaz parfaits : $S(T,P) = C_{\rm p} \, \ln \left(\frac{T}{T_0} \right) - n \, R \, \ln \left(\frac{P}{P_0} \right) + S(T_0,P_0)$ pour les phases condensées : $S(T,P) = C \, \ln \left(\frac{T}{T_0} \right) + S(T_0,P_0)$

Applications directes du cours

1 Congélateur réversible

Un congélateur, au fonctionnement réversible, est placé dans une pièce à 20 °C. Il est capable de maintenir son contenu à -19 °C, en y retirant $400 \, \text{kJ}$ par heure.

- 1. Calculer le transfert thermique fourni par le congélateur à la pièce.
- 2. En déduire l'efficacité de ce congélateur.
- 3. Déterminer la puissance mécanique (et donc électrique) à fournir au congélateur.

2 Exemple de moteur ditherme

Un moteur fonctionne entre deux sources idéales de chaleur, aux températures $T_{\rm C}=377\,^{\circ}{\rm C}$ et $T_{\rm F}=127\,^{\circ}{\rm C}$. Il fournit sur un cycle un travail $W=500\,{\rm J}$ pour une consommation thermique $Q_{\rm C}=1500\,{\rm J}$.

- 1. Calculer son rendement et le comparer au rendement d'un cycle de Carnot entre les mêmes sources.
- 2. Calculer l'entropie créée $S_{\rm c}$ sur un cycle.
- 3. À l'aide du deuxième principe appliqué à ce moteur et au moteur de Carnot fonctionnant entre les mêmes sources, montrer que, pour une consommation identique, le moteur de Carnot fournit mécaniquement la quantité $T_{\rm F}\,S_{\rm c}$ de plus que ce moteur.

Exercices

1 Réfrigérateur à absorption

Un réfrigérateur à absorption est une machine frigorifique tritherme. Dans une telle machine, aucun travail n'est échangé. L'énergie est fournie sous forme thermique à haute température. On dispose ainsi de trois sources : l'intérieur du réfigérateur à $T_1 = -8$ °C, l'air ambiant à $T_2 = 27$ °C et un réchaud à gaz à $T_3 = 127$ °C. On note Q_1 , Q_2 et Q_3 les transferts thermiques respectifs, reçus à chaque cycle par le fluide frigorifique.

- 1. Déterminer les signes des transferts thermiques.
- 2. Définir l'efficacité maximale de ce réfrigérateur. L'exprimer en fonction des températures et la calculer.
- 3. La comparer à l'efficacité maximale d'un réfrigérateur classique dans les mêmes conditions d'utilisation. Conclure sur l'utilité d'un tel réfrigérateur.

2 Chauffage d'un bassin

Une pompe à chaleur est branchée entre l'atmosphère que l'on suppose à température constante $T_0 = 280 \,\mathrm{K}$ et un bassin d'eau, de volume $V = 250 \,\mathrm{m}^3$, à la température T. T évolue de $T_1 = 280 \,\mathrm{K}$ à $T_2 = 320 \,\mathrm{K}$. Son fonctionnement est réversible. La capacité thermique du bassin est $C = 1 \,\mathrm{GJ} \cdot \mathrm{K}^{-1}$.

On note Q_0 et Q les transferts thermiques sur la durée de fonctionnement de la pompe, respectivement depuis l'atmosphère et depuis le bassin. W est le travail mécanique consommé par le moteur.

- 1. Exprimer Q_0 , Q et W en fonction de C et des températures fixées. Calculer les valeurs. On donnera le travail en kW·h.
- 2. En déduire l'efficacité de la pompe.
- 3. Quelle aurait été la consommation électrique si on avait chauffé le bassin par un système de résistances électroniques ? Conclure.

3 Climatiseur

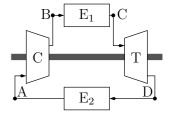
On désire maintenir une pièce de volume $V=100\,\mathrm{m}^3$ à $T_{\mathrm{int}}=20\,\mathrm{^{\circ}C}$ alors que l'air extérieur est à $T_{\mathrm{ext}}=30\,\mathrm{^{\circ}C}$. La pression de l'air (gaz parfait diatomique) est partout égale à $p=1\,\mathrm{bar}$.

- 1. Calculer la capacité thermique massique à pression constante $c_{\rm p}$ de l'air.
- 2. On constate qu'en cas de coupure du système de climatisation, la température passe à 21 °C en 15 minutes. Calculer la puissance thermique $P_{\rm th}$ des fuites (transfert thermique par unité de temps).
- 3. Calculer l'efficacité maximale que le climatiseur peut avoir dans les conditions décrites plus haut. En déduire la puissance minimale électrique $P_{\rm e}$ requise.
- 4. La consommation électrique réelle est de 200 W. Comment expliquer cet écart surprenant?

4 Moteur thermique avec deux sources non idéales

Un moteur thermique réversible fonctionne entre deux sources de même capacité thermique $C = 500 \,\mathrm{J\cdot K^{-1}}$, de température respective $T_{\rm c}$ et $T_{\rm f}$. Ces deux températures varient, depuis des valeurs initiales $T_{\rm c,0} = 373 \,\mathrm{K}$ et $T_{\rm f,0} = 293 \,\mathrm{K}$.

- 1. Déduire d'un bilan entropique la relation entre les températures T_c , T_f , $T_{c,0}$ et $T_{f,0}$.
- 2. Calculer la température T_1 commune aux deux sources, à l'arrêt du moteur.
- 3. Calculer le travail fourni par le moteur jusqu'à l'arrêt.
- 4. Calculer l'efficacité e de ce moteur.
- 5. Calculer l'efficacité e' que l'on aurait obtenue si les sources avaient été idéales.

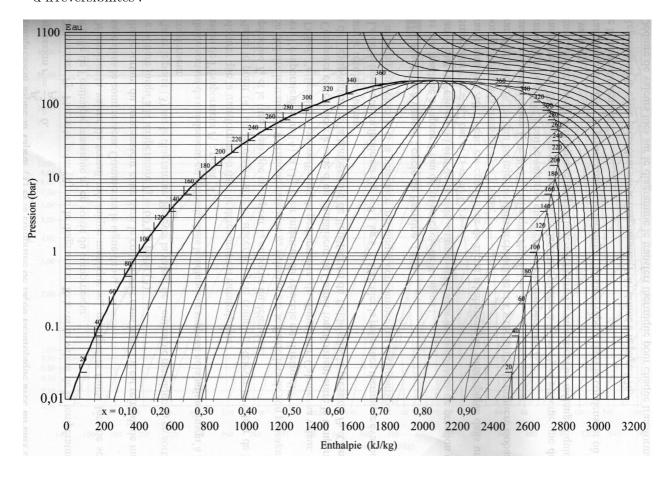

5 Turbine à gaz

Une turbine à gaz est une machine qui permet de transformer de l'énergie thermique apportée par une source chaude en énergie mécanique disponible sur l'axe de rotation de la machine. Un gaz y subit les quatre transformations suivantes :

- $-A \rightarrow B$: compression isentropique (compresseur);
- B→C : échange thermique avec une source chaude (échangeur 1);
- C→D : détente isentropique (turbine);
- $-D \rightarrow A$: échange thermique avec une source froide (échangeur 2).

Les échanges thermiques sont réalisés à pression constante. Le compresseur et la turbine sont calorifugés. Les transformations sont toutes supposées réversibles, le gaz est supposé parfait et diatomique.

- 1. Représenter le cycle parcouru par le fluide dans le diagramme de Clapeyron.
- 2. Définir le rendement η du système. L'exprimer en fonction du rapport des capacités thermiques γ et du rapport des pressions $r = P_{\rm B}/P_{\rm A}$.



- 3. Tracer l'allure de la courbe $\eta = f(r)$, commenter.
- 4. Exprimer le travail fourni par le système à l'arbre de transmission en fonction de r et des deux températures extrêmes.
- 5. Exprimer la valeur de r pour laquelle le travail reçu sur l'arbre de transmission est maximal en fonction des températures mises en jeu. Pour des températures extrêmes sur un cycle égales à $800\,\mathrm{K}$ et $300\,\mathrm{K}$, calculer cette valeur de r et la valeur du rendement associé.

6 Cycle de Rankine

Dans une machine à vapeur, l'eau décrit un cycle de Rankine :

- dans l'état A, l'eau est à l'état de liquide saturant seul, dans les conditions de pression et température $P_1 = 0.2$ bar et $T_1 = 60$ °C;
- transformation AB : l'eau est comprimée de façon adiabatique et isentropique dans une pompe, jusqu'à la pression $P_2 = 15 \,\mathrm{bar}$;
- transformation BC : l'eau est injectée dans la chaudière et s'y réchauffe de manière isobare jusqu'à la température $T_2 = 200$ °C, telle que $P_{\text{sat}}(T_2) = P_2$;
- transformation CD : l'eau se vaporise entièrement à la température T_2 ;
- transformation DE : la vapeur est admise dans le cylindre à T_2 et P_2 et effectue une détente adiabatique et isentropique jusqu'à la température T_1 , on obtient un mélange liquide-vapeur;
- transformation EA : le mélange liquide-vapeur est évacué dans le condenseur où il se liquéfie totalement.
 - 1. Représenter le cycle précédent sur le diagramme $(\log P, h)$ ci-dessous.
 - 2. Déduire de valeurs lues sur le diagramme le transfert thermique pour chaque transformation du cycle.
 - 3. Calculer le rendement de ce moteur et le comparer au rendement de Carnot. Quelles sont les causes d'irréversibilités?

