
DM nº 5 de Physique - Régime transitoire

Étude d'un circuit linéaire

On considère le circuit ci-contre, qui contient deux générateurs réels (E_0,r_0) et (E_1,r_1) . On souhaite étudier l'évolution de la tension u(t) aux bornes de la résistance R au sein de ce circuit, en régime transitoire et en régime forcé sinusoïdal.

A Première charge

Au début de l'expérience que l'on cherche à modéliser, les deux interrupteurs sont ouverts et le condensateur est déchargé. On ferme à t = 0 uniquement l'interrupteur k_0 .

- 1. Déterminer la valeur de $u(t=0^+)$.
- 2. Déterminer la valeur finale de u.
- 3. Déterminer l'équation différentielle régissant l'évolution de u(t).
- 4. Résoudre cette équation et tracer l'évolution de u(t). Indiquer sur le graphe la valeur initiale, la valeur finale et la tangente à l'origine.
- 5. Au bout de combien de temps peut-on considérer le régime permanent comme atteint?

B Deuxième charge

Une fois la première charge complètement réalisée, on ferme désormais l'interrupteur k_1 (k_0 reste fermé). Pour simplifier les notation, on modifie la valeur du temps de façon à avoir t = 0 à la fermeture de k_1 .

- 6. Déterminer la valeur de $u_C(t=0^+)$.
- 7. Déterminer la valeur finale de u_C . Quelle relation doit vérifier E_1 pour que l'on puisse dire que le condensateur se charge durant cette deuxième phase?
- 8. Déterminer l'équation différentielle régissant l'évolution de $u_C(t)$.
- 9. Résoudre cette équation.
- 10. Dans les deux cas possibles d'une charge et d'une décharge, tracer l'évolution de $u_C(t)$. Indiquer sur le graphe la valeur initiale, la valeur finale et la tangente à l'origine.