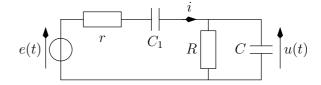
TD nº 6 de Physique Électricité - Régimes transitoires d'ordre 2

Applications directes du cours

1 Mise en équation

Déterminer l'équation différentielle régissant l'évolution de la tension u, sous une forme canonique. Donner l'expression des constantes de cette équation.



Entraînement : changer un des condensateurs en bobine, puis l'autre, puis les deux.

2 Valeurs initiales et finales

Déterminer, sur le schéma ci-dessus, les valeurs de u et de i à t=0, en considérant les condensateurs déchargés initialement.

Déterminer les valeurs de u et de i à quand t tend vers l'infini.

Entraînement : changer un des condensateurs en bobine, puis l'autre, puis les deux.

3 Solutions bornées

Soit un oscillateur harmonique amorti, dont l'équation différentielle est linéaire, du deuxième ordre, à coefficients constants a, b et c. Montrer que les solutions possibles sont bornées seulement si a, b et c sont de même signe.

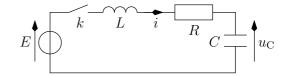
Mettre cette équation différentielle sous forme canonique et déterminer les trois types de régimes possibles si la grandeurs étudiée x a comme conditions initiales $x(0) = X_0$ et $\dot{x}(0) = 0$.

Exercices

1 Circuit R,L,C série \star

On considère le circuit ci-contre dans lequel l'interrupteur est initialement ouvert et le condensateur C déchargé. On ferme l'interrupteur à t=0.

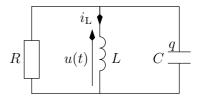
On donne $R = 50 \Omega$, $C = 200 \mu F$ et L = 10 mH.



- 1. Déterminer les valeurs initiales de $u_{\rm C}$, de i et de $\frac{{\rm d}u_{\rm C}}{{\rm d}t}$.
- 2. Établir l'équation différentielle régissant l'évolution de $u_{\rm C}$. La mettre sous forme canonique en faisant apparaître le facteur de qualité Q et la pulsation propre ω_0 .
- 3. En déduire l'expression de $u_{\rm C}$. Tracer l'allure de son évolution temporelle.
- 4. Établir l'équation différentielle régissant l'évolution de i(t). La mettre sous forme canonique. Commenter les expressions des constantes.
- 5. Exprimer i(t) et tracer son allure.

2 Régime libre d'un circuit « bouchon » **

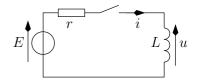
On considère le montage «bouchon» ci-contre, avec $R=10\,\mathrm{k}\Omega,\,L=100\,\mathrm{mH},$ et $C=0,1\,\mathrm{pF}.$ On prendra, pour conditions initiales, à t=0, une charge du condensateur de valeur $q(t=0)=q_0$ et l'intensité dans la bobine de valeur $i_\mathrm{L}(t=0)=\frac{q_0}{2\,R\,C}.$



- 1. Déterminer l'équation différentielle qui régit l'évolution de u(t) et les constantes associées.
- 2. Calculer la valeur du facteur de qualité Q et de la pulsation propre ω_0 . Quel est le type de régime du circuit ?
- 3. Déterminer les deux conditions initiales à prendre en compte.
- 4. Déterminer l'expression complète de u(t).
- 5. Tracer l'allure de u(t) en indiquant notamment la tangente à l'origine et la pseudo-période.
- 6. Calculer l'écart relatif de la pseudo-période T à la période propre T_0 . Commenter.

3 Surtension aux bornes d'une bobine **

On connecte un appareil globalement inductif, assimilable à une inductance $L=0.4\,\mathrm{H}$, à un générateur réel de fém $E=30\,\mathrm{V}$ et de résistance interne $r=50\,\Omega$. Alors que l'interrupteur est ouvert depuis longtemps, on le ferme.



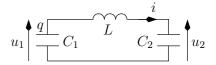
- 1. Établir l'expression de la tension u(t) aux bornes de la bobine.
- 2. Au bout de combien de temps peut-on dire que le régime permanent est atteint?
- 3. On suppose, après avoir atteint le régime permanent, que l'on tente d'ouvrir l'interrupteur. Pourquoi cela pose-t-il un problème avec le modèle d'interrupteur utilisé dans le schéma?

Dans les premiers instants de l'ouverture de l'interrupteur, celui-ci se modélise par un condensateur de capacité $C=10\,\mathrm{pF}$. Pour cette partie, on positionne l'origine des temps t=0 à l'ouverture de l'interrupteur.

- 4. Déterminer l'équation différentielle vérifiée par u(t). Commenter la valeur du facteur de qualité.
- 5. Montrer que $u(0^+) = 0$ et $\frac{du(0^+)}{dt} = \frac{E}{rC}$.
- 6. Déterminer, en justifiant l'approximation choisie, l'expression de u(t).
- 7. Quelle est la tension maximale atteinte? À quel instant? Conclure sur le phénomène électrique qui risque de se produire lors de cette expérience.

4 Circuit oscillant **

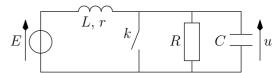
Soit le montage ci-contre. À l'instant t=0, un condensateur de capacité C_1 et de charge initiale q_0 est connecté à un groupement série L, C_2 . Le condensateur de capacité C_2 est initialement déchargé. Pour simplifier, on prendra $C_1=C_2=C$.



- 1. Établir l'équation différentielle régissant l'évolution de i(t).
- 2. Déterminer et tracer i(t).
- 3. En déduire les expressions de $u_1(t)$ et $u_2(t)$ et tracer les allures des graphes correspondants.
- 4. Effectuer un bilan des puissances reçues par la bobine et par l'ensemble des deux condensateurs.

5 Surtension aux bornes d'un condensateur ***

On considère le circuit ci-contre. La bobine possède une inductance L et une résistance interne r. L'interrupteur étant fermé depuis très longtemps, on l'ouvre à l'instant t=0.



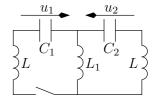
- 1. Déterminer l'équation différentielle vérifiée par la tension u(t) aux bornes du condensateur.
- 2. Déterminer les deux conditions initiales $u(t=0^+)$ et $\frac{du(t=0^+)}{dt}$.
- 3. À l'aide d'un schéma équivalent, établir la tension u_{∞} aux bornes du condensateur une fois le régime permanent pour t>0 atteint.

Afin de ne pas endommager le condensateur lors de la fermeture de l'interrupteur, on souhaite que la tension u(t) à ses bornes ne dépasse jamais u_{∞} .

- 4. Quelle relation entre r, L, C et R doit alors être vérifiée?
- 5. Que devient-elle si l'on souhaite de plus atteindre le régime permanent le plus rapidement possible?
- 6. Établir dans ce dernier cas l'expression de u(t) et tracer son allure.

6 Étude de circuits couplés $\star \star \star$

On considère le circuit ci-contre, où avant l'instant t=0, le condensateur C_1 est chargé à la tension u_0 , le condensateur C_2 n'est pas chargé et aucun courant ne circule. On ferme l'interrupteur à t=0. Les deux capacités C_1 et C_2 sont supposées égales, notées C.



1. Établir le système d'équations différentielles couplées en $u_1(t)$ et $u_2(t)$.

On pose $S = u_1 + u_2$ et $D = u_1 - u_2$. On note

$$\frac{1}{LC} = \omega_0^2$$
 $\frac{1}{(L+2L_1)C} = \omega_1^2$ $\frac{L_1}{L} = k$ (coefficient de couplage)

- 2. Quelles sont les équations différentielles satisfaites par S(t) et D(t)?
- 3. Déterminer S(t) et D(t).
- 4. En déduire $u_1(t)$ et $u_2(t)$.
- 5. Dans le cas d'un faible couplage, soit $k \ll 1$, simplifier les expressions de $u_1(t)$ et $u_2(t)$. On fera intervenir la pulsation $\omega = \frac{k}{2} \omega_0$.
- 6. Représenter, à l'aide de la calculatrice ou de Python, l'allure du graphe $\frac{u_2(t)}{u_0}$ pour k=0,1 en fonction de $\frac{t}{T_0}$ (avec $T_0=\frac{2\pi}{\omega_0}$).