Fonctions de références

Table des matières

1	Fonction exponentielle	1
	1.1 Fonction exponentielle	-
	1.2 Sinus et cosinus hyperboliques	•
2	Les fonctions logarithmes	4
	2.1 Logarithme népérien	4
	2.2 Logarithme en base a	
3	Fonctions puissances	ţ
	3.1 Définition d'une puissance réelle	Į
	3.2 Croissances comparées	

1 Fonction exponentielle

1.1 Fonction exponentielle

Théorème 1.

Il existe une unique fonction f dérivable sur $\mathbb R$ et vérifiant :

$$(1) \qquad \left\{ \begin{array}{l} f' = f \\ f(0) = 1 \end{array} \right.$$

Nous ne démontrerons pas cette année l'existence d'une telle fonction (vous le ferez l'année prochaine), par contre nous démontrerons son unicité.

Définition 2.

On appelle exponentielle et on note exp la fonction définie et dérivable sur \mathbb{R} vérifant la propriété (1).

Notations

1. On notera $\exp(1) = e$ c'est la constante de Néper. Et on a

$$e \simeq 2, 7$$

2. Pour tout réel a on utilisera souvent la notation :

$$\exp(a) = e^a$$

La pertinence de cette notation est expliquée par la proposition suivante.

Proposition 3 (Propriété de morsphisme de l'exponentielle).

On a les propriétés suivantes :

1. $\forall (a,b) \in \mathbb{R}^2$, $\exp(a+b) = \exp(a) \exp(b)$

2. $\forall a \in \mathbb{R}, \ \exp(-a) = \frac{1}{\exp(a)}$

3. $\forall (a,b) \in \mathbb{R}^2$, $\exp(a-b) = \frac{\exp(a)}{\exp(b)}$

4. $\forall a \in \mathbb{R}, \forall p \in \mathbb{Z}, \exp(ap) = (\exp(a))^p$

Corollaire 4.

Soient $(a_i)_{i\in \llbracket 1,n\rrbracket}$ une famille de n réels alors on a :

$$\prod_{k=1}^{n} e^{a_k} = e^{\sum_{k=0}^{n} a_k}$$

Étude de la fonction

— La fonction exponentielle est définie, continue et dérivable sur \mathbb{R} .

— Sa dérivée est définie par :

$$\forall x \in \mathbb{R} \ (\exp)' x = \exp x$$

Si u est une fonction dérivable sur un intervalle I,

$$(\exp(u))' = u' \exp(u) = u'e^u$$

— Pour tout réel x, $\exp(x) > 0$.

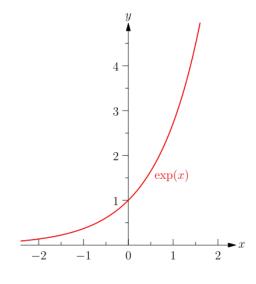
— La fonction exponentielle est strictement croissante sur \mathbb{R} .

 $-\exp(0) = 1, \exp(1) = e$

— Pour tout $x \in \mathbb{R}$, $\exp(x) \ge x + 1$

— Limites à connaître impérativement,

$$\lim_{x \to +\infty} \exp(x) = +\infty \qquad \lim_{x \to -\infty} \exp(x) = 0 \qquad \lim_{x \to 0} \frac{\exp(x) - 1}{x} = 1$$



1.2 Sinus et cosinus hyperboliques

Définition 5.

Les fonctions **cosinus hyperbolique** et **sinus hyperbolique** sont définies par :

$$\mathrm{ch}: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{e^x + e^{-x}}{2} \end{array} \right. \quad \mathrm{sh}: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{e^x - e^{-x}}{2} \end{array} \right.$$

Étude des fonctions

— Les fonctions chet sh sont définies, continues et dérivables sur \mathbb{R} .

 $-- \forall x \in \mathbb{R} \ (\mathrm{ch})'x = \mathrm{sh}x, \ (\mathrm{sh})'(x) = \mathrm{ch}x$

Si u est une fonction dérivable sur un intervalle I,

$$(\operatorname{ch}(u))' = u'\operatorname{sh}(u) \quad (\operatorname{sh}(u))' = u'\operatorname{ch}(u)$$

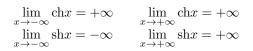
— La fonction chest paire et la fonction shest impaire.

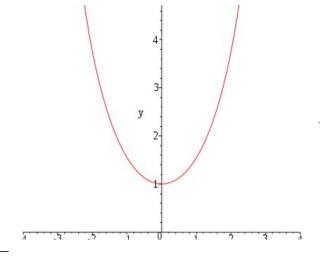
$$\forall x \in \mathbb{R}, \operatorname{ch}(-x) = \operatorname{ch}(x), \quad \operatorname{sh}(-x) = -\operatorname{sh}(x)$$

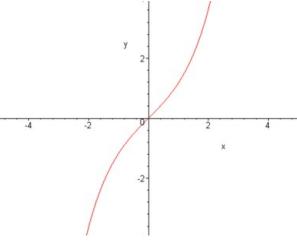
— La fonction sh est strictement croissante sur \mathbb{R} et la fonction ch est strictement décroissante sur \mathbb{R}_{-} et strictement croissante sur \mathbb{R}_{+} .

- ch(0) = 1, sh(0) = 0

_







Proposition 6.

$$\forall x \in \mathbb{R}, \ \operatorname{ch}^2(x) - \operatorname{sh}^2(x) = 1$$

Les fonctions logarithmes $\mathbf{2}$

Logarithme népérien

L'application exponenctielle définie au paragraphe précédent est strictement croissante sur \mathbb{R} , ainsi d'après le théorème de la bijection c'est une bijection de \mathbb{R} à valeurs dans \mathbb{R}_+^* elle admet donc une application réciproque.

Définition 7.

La fonction réciproque de la fonction exponentielle est appelée logarithme népérien et notée ln :

$$\ln: \left\{ \begin{array}{ccc} \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\ y & \longmapsto & \ln(y) \end{array} \right.$$

Étude de la fonction

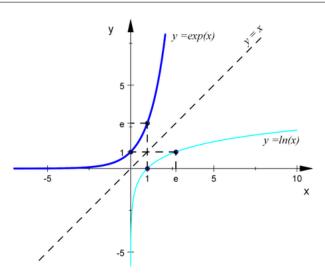
- La fonction ln est définie, continue et dérivable sur \mathbb{R}_+^* .

— Pour tout $x \in \mathbb{R}_+^*$, $\ln'(x) = \frac{1}{x}$. Si u est une application dérivable sur un intervalle I et à valeurs dans \mathbb{R}_+^* alors

$$(\ln(u))' = \frac{u'}{u}$$

- La fonction est strictement croissante sur \mathbb{R}_+^* .
- $-\ln(1) = 0$ et $\ln(e) = 1$.

 $\lim_{x \to +\infty} \ln(x) = +\infty$



Proposition 8 (Propriétés de morphisme du logarithme).

$$\forall a \in \mathbb{R}_+^*, \forall b \in \mathbb{R}_+^*, \ \ln(ab) = \ln(a) + \ln(b)$$

De plus,

$$\forall a \in \mathbb{R}_+^* \ln \left(\frac{1}{a}\right) = -\ln(a).$$

$$\forall a \in \mathbb{R}_+^*, \forall p \in \mathbb{Z}, \ln(a^p) = p \ln(a).$$

Corollaire 9.

Soient $(a_i)_{i\in [\![1,n]\!]}$ une famille de n réels strictement positifs alors on a :

$$\ln\left(\prod_{k=1}^{n} a_k\right) = \sum_{k=0}^{n} \ln(a_k)$$

2.2 Logarithme en base a

Définition 10.

Soit $a \in \mathbb{R}_+^* \setminus \{1\}$. La fonction **logarithme en base** a, notée \log_a , est définie par :

$$\log_a : \left\{ \begin{array}{ccc} \mathbb{R}_+^* & \to & \mathbb{R} \\ x & \mapsto & \log_a(x) = \frac{\ln(x)}{\ln(a)} \end{array} \right.$$

Proposition 11.

$$\forall a \in \mathbb{R}_+^* \setminus \{1\}, \quad \forall N \in \mathbb{N} \quad \log_a(a^N) = N$$

3 Fonctions puissances

3.1 Définition d'une puissance réelle

$\{ {f D} {f e} {f finition} \ {f 12.} \}$

Soit $a \in \mathbb{R}$ et $x \in \mathbb{R}_+^*$. On note x^a ("x puissance a") le réel :

$$x^a = \exp(a \ln(x)).$$

Remarque. Si $p \in \mathbb{N}^*$ et $x \in \mathbb{R}_+^*$ alors la "nouvelle" définition coincide avec "l'ancienne" et on retrouve pour les exposants réels, les propriétés connues pour les exposants entiers.

Proposition 13.

$$\forall (a,b) \in \mathbb{R}^2 \ \forall (x,y) \in (\mathbb{R}_+^*)^2 \quad x^{a+b} = x^a x^b, \ x^{-a} = \frac{1}{x^a} \ (xy)^a = x^a y^a \ (x^a)^b = x^{ab}$$

Proposition 14.

$$\forall a \in \mathbb{R} \ \forall x \in \mathbb{R} \ \forall y \in \mathbb{R}^*_+ \ (e^x)^a = e^{ax} \ \text{et } \ln(y^a) = a \ln(y)$$

5

Proposition 15.

Soit a un réel non nul. Pour tout réel strictement positif y, le nombre $y^{\frac{1}{a}}$ est l'unique solution réelle positive de l'équation $x^a = y$.

On pourra ainsi dire que si $a \in \mathbb{R}^*$, la fonction $x \mapsto x^a$ est bijective, et que sa réciproque est la fonction $x \mapsto x^{\frac{1}{a}}$.

Étude de la fonction

Soit $a \in \mathbb{R}$.

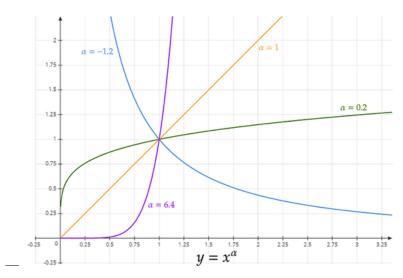
- La fonction $f_a: x \mapsto x^a$ est définie, continue et dérivable sur \mathbb{R}_+^* .
- Pour tout $x \in \mathbb{R}_+^*$, $f_a'(x) = ax^{a-1}$.

Si u est une fonction dérivable sur un intervalle I et à valeurs dans \mathbb{R}_+^* alors

$$(f_a(u))' = au' f_{a-1}(u)$$

- Si $a \in \mathbb{R}_+^*$ la fonction f_a est strictement croissante. Si $a \in \mathbb{R}_-^*$ la fonction f_a est strictement déroissante. La fonction f_0 est constante égale à 1.
- Si $a \in \mathbb{R}_+^*$ on a $\lim_{x \to 0^+} x^a = 0$ et $\lim_{x \to +\infty} x^a = +\infty$.

Si $a \in \mathbb{R}_{-}^{*}$ on a $\lim_{x \to 0^{+}} x^{a} = +\infty$ et $\lim_{x \to +\infty} x^{a} = 0$. On a les limite: $\lim_{x \to 0^{+}} x^{0} = 1$ et $\lim_{x \to +\infty} x^{0} = 1$



3.2 Croissances comparées

Lemme 16.

Soit $a \in \mathbb{R}_+^*$. Il existe une constante $C_a \in \mathbb{R}_+$ telle que

$$\forall x \in \mathbb{R}_+^* \qquad \frac{x^a}{e^x} \le C_a x^{-a}.$$

6

Proposition 17 (Croissances comparées).

Soit $a \in \mathbb{R}_+^*$. On a les limites suivantes

$$\lim_{x \to +\infty} \frac{x^a}{e^x} = 0 \qquad \lim_{x \to -\infty} |x|^a e^x = 0 \qquad \lim_{x \to +\infty} \frac{\ln(x)}{x^a} = 0 \qquad \lim_{x \to 0^+} x^a \ln(x) = 0$$