Programme de colles 6

La colle se déroulera en deux temps.

1. Le cours:

- Il vous sera demandé d'énoncer une définition ou proposition du cours (pas nécessairement dans la liste des propositions exigibles).
- Vous devrez ensuite démontrer une des propositions dont la liste figure dans ce programme (avant de la démontrer vous devrez l'énoncer).

2. Exercice(s):

Le ou la colleuse vous donnera un ou plusieurs exercices à faire portant sur le programme de colles.

Dans un premier temps la connaissance du cours suffira pour obtenir une note supérieure (ou égale) à la moyenne. Connaître son cours implique bien évidemment de réussir les questions de cours mais pas seulement. Le colleur est à même de juger que le cours n'est pas suffisamment connu pendant le ou les exercices.

La colle portera sur les chapitres Complexes et Calculs de promitives.

Complexes

- 1. Forme algébrique d'un nombre complexe.
 - L'ensemble \mathbb{C} muni des lois + et \times
 - Le module.
- 2. Forme exponentielle
 - Nombres complexes de module 1
 - Arguments d'un nombre complexe non nul
- 3. Equations algébriques
 - Racines carrées d'un complexe.
 - Equations polynômiales comples de dgré 2.
 - Racines nième d'un nombre complexe
 - Racines de l'unité et racines nième d'un nombre complexe.
- 4. Racines n-ièmes.
 - Racine *n*-ième de l'unité.
 - Racines n-ième d'un complexe.
- 5. Exponentielle complexe.
- 6. Fonctions à valeurs complexes.

Dérivation d'une fonction à valeurs complexes (définition naïve). Dérivée d'une composée avec la fonction exponentielle.

7. Nombres complexes et géométrie plane.

Alignement et othogonalité.

Démonstrations-exercices exigibles

- 1. Proposition 8 inégalité triangulaire et inégalité triangulaire renversée.
- 2. Proposition 15 propriétés de la notation $e^{i\theta}$.
- 3. Exemple 5 Méthode de l'angle moitié.
- 4. Exemple 6 Linéarisation des puissances de sin et cos. Une autre puissance que 3 peut vous être demandée.
- 5. Exemple 7 Expression de $\cos(n\theta)$ et $\sin(n\theta)$ à l'aide de puissances de $\sin\theta$ et $\cos\theta$. L'exercice pourra être posé pour une autre valeur que 4.
- 6. Proposition 25 Expression des racines n-ième de l'unité.

Savoir-faire de base

- Calculer la forme algébrique et la forme exponentielle d'un complexe.
- Reconnaître la forme la plus adaptée dans un calcul.
- Utiliser les propriétés du conjugué et du module.
- Utiliser la méthode de l'angle moitié.
- Linéariser les puissances de cosinus et le sinus.
- Exprimer $\cos n\theta$ et $\sin n\theta$ en fonction de puissances de sinus et de cosinus.
- Trouver les racines carrées d'un complexe.
- Trouver les solutions d'une équation polynômiale de degré 2 à coefficients complexes.
- Connaître la forme et les propriétés des racines n-ième de l'unité
- Savoir calculer les racines n-ième d'un complexe.
- Résoudre des équations complexes mettant en jeux l'exponentielle complexe.

Primitives

- 1. Généralités
 - Définitions, primitives usuelles et composition.
- 2. Existence de primitives pour une fonction continue.
- 3. Recherche de primitives et calculs d'intégrales. Intégration par parties, changement de variable, calculs classiques.

Démonstrations-exercices exigibles

- Proposition 11 formule d'intégration par partie.
- Proposition 12 Changement de variable.
- Exemple 5 (trouver une primitive soit de l'application $x \mapsto \frac{1}{x^2-2x-3}$ soit de l'application $x \mapsto \frac{1}{3x^2+x+1}$).

Savoir-faire de base

- 1. Reconnaître les primitives classiques ou les composées de primitives classiques.
- 2. Faire une IPP, reconnaitre dans le produit la fonction à dériver et celle à intégrer.
- 3. Faire deux IPP de suite pour trouver une expression de l'intégrale permetant de la calculer.
- 4. Procéder à une changement de variables (dans les deux sens).
- 5. trouver une primitive de l'inverse d'un trinôme.
- 6. trouver une primitive (en pasant par les fonctions à valeurs complexes) du produit d'une fonction trigonométrique et une exponentielle.