Arithmétique

1 Divisibilité

Exercice 1.

Montrer que, tout $n \in \mathbb{N}^*$, 609 | $5^{4n} - 2^{4n}$.

Exercice 2.

Déterminer les entiers relatifs n tels que n-4 divise 3n-17.

Exercice 3.

Soir $n \ge 1$ un entier. Déterminer le reste de la division euclidienne de la somme des n premiers entiers strictement positifs par n.

Exercice 4.

Soient a, b, n trois entiers supérieurs ou égaux à 1. On note q le quotient de la division euclidienne de a-1 par b, et r le reste. Déterminer le quotient et le reste de la division euclidienne de ab^n-1 par b^{n+1} .

2 PGCD, PPCM, nombres premiers entre eux.

Exercice 5.

Calculer le PGCD de 9100 et 1848, puis pour $n \in \mathbb{N}^*$ de $n^3 + 2n$ et $n^4 + 3n^2 + 1$.

Exercice 6.

- 1. Quels sont les diviseurs communs à 390 et 525.
- 2. Calculer le PGCD de $3^{123} 5$ et 25.
- 3. Soit $n \in \mathbb{Z}$. Démontrer que 6 divise n(n+1)(n+2).

Exercice 7.

1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'entiers défnie par $u_0=14$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=5u_n-6$. Démontrer que le PGCD de deux termes consécutifs de la suite est constant. Préciser sa valeur.

Exercice 8. Homogénéité du PGCD

- 1. Montrer que pour tout $(a, b) \in \mathbb{N}^2$, pour tout $\lambda \in \mathbb{N}$, $PGCD(\lambda a, \lambda b) = \lambda (PGCD(a, b)$.
- 2. En déduire que pour tout $(a,b) \in \mathbb{N}^2$, pour tout $\lambda \in \mathbb{N}$, $PPCM(\lambda a, \lambda b) = \lambda (PPCM(a, b)$.

3 Nombres permiers

Exercice 9.

1. Soit q un entier impair. Démontrer que, pour tout $x \in \mathbb{R}$,

$$x^{q} + 1 = (x+1)(x^{q-1} - x^{q-2} + \dots + 1)$$

2. Soit $m \in \mathbb{N}^*$ tel que $2^m + 1$ soit premier. Montrer que $m = 2^n$, où $n \in \mathbb{N}$.

Exercice 10. Nombre de Mersenne Soient $a, n \leq 2$ des entiers.

- 1. Montrer que si $a^n 1$ est premier, alors a = 2 et n est premier.
- 2. On note $M_n = 2^n 1$ le *n*-ième nombre de Mersenne. Vérifier que M_{11} n'est pas premier.