Décomposition dans la base des polynômes de Legendre

On rappelle que $\mathbb{R}[X]$ désigne le \mathbb{R} -espace vectoriel des polynômes à coefficients réels. Pour n entier naturel, $\mathbb{R}_n[X]$ désigne le sous-espace vectoriel de $\mathbb{R}[X]$ des polynômes de degré inférieur ou égal à n. On précise que l'on pourra confondre polynôme et fonction polynomiale associée.

Soit P un polynôme de $\mathbb{R}[X]$. On notera $P^{(n)}$ sa dérivée n-ième.

Pour $n \in \mathbb{N}$, on note

$$U_n = (X^2 - 1)^n$$
 et $L_n = \frac{1}{2^n n!} U_n^{(n)}$.

Les polynômes L_n sont appelés polynômes de Legendre.

Dans tout ce problème enfin, n désignera un entier naturel.

Partie A. Une base de polynômes scindés. (CCP PC 2018)

- 1. Déterminer L_0 et L_1 et vérifier que $L_2 = \frac{1}{2} (3X^2 1)$.
- 2. (a) Quel est le degré de U_n ? Son coefficient dominant? Calculer $U_n^{(2n)}$. Que vaut $U_n^{(k)}$ lorsque k > 2n?
 - (b) Justifier que L_n est de degré n et préciser la valeur de a_n .
- 3. Montrer que la famille (L_0, \ldots, L_n) est une base de $\mathbb{R}_n[X]$.
- 4. (a) Énoncer le théorème de Rolle.
 - (b) Pour $n \in \mathbb{N}^*$, déterminer les racines de U_n , en précisant leur ordre de multiplicité, puis justifier qu'il existe un réel $\alpha \in]-1,1[$ et un réel λ que l'on ne cherchera pas à déterminer, tels que :

$$U'_{n} = \lambda (X - 1)^{n-1} (X + 1)^{n-1} (X - \alpha).$$

(c) Dans cette question seulement, $n \ge 2$. Soit $k \in [1, n-1]$. On suppose qu'il existe des réels $\alpha_1, \ldots, \alpha_k$ deux à deux distincts dans]-1,1[et un réel μ tels que

$$U_n^{(k)} = \mu(X-1)^{n-k}(X+1)^{n-k}(X-\alpha_1)\cdots(X-\alpha_k).$$

Justifier qu'il existe des réels $\beta_1, \ldots, \beta_{k+1}$ deux à deux distincts dans]-1,1[et un réel ν tels que

$$U_n^{(k+1)} = \nu(X-1)^{n-k-1}(X+1)^{n-k-1}(X-\beta_1)\cdots(X-\beta_{k+1}).$$

(d) En déduire que si n est non nul, L_n admet n racines simples, toutes dans l'intervalle]-1,1[.

Partie B. Évaluation de L_n en 1 et en -1.

- 1. Pour un entier $k \in [0, n]$, exprimer le polynôme $((X+1)^n)^{(k)}$ à l'aide de factorielles.
- 2. À l'aide de la formule de Leibniz, démontrer :

$$L_n = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k}^2 (X+1)^{n-k} (X-1)^k.$$

3. Calculer $L_n(1)$ et $L_n(-1)$.

Partie C. Calcul des nombres $\langle L_n, L_m \rangle$.

Dans cette partie, pour deux polynômes P et Q de $\mathbb{R}[X]$, on notera $\langle P, Q \rangle$ l'intégrale

$$\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t)dt.$$

Dans cette partie, m est tout comme n un entier naturel.

1. Pour $k \in [0, n]$, on note

$$\mathcal{P}(k): \langle U_n^{(n)}, U_m^{(m)} \rangle = (-1)^k \langle U_n^{(n-k)}, U_m^{(m+k)} \rangle .$$

- (a) (*) En supposant n non nul, à l'aide d'une intégration par parties, démontrer que pour $k \in [0, n-1]$ $\mathcal{P}(k) \Longrightarrow \mathcal{P}(k+1)$.
- (b) Justifier l'égalité

$$\langle L_n, L_m \rangle = \frac{(-1)^n}{2^{n+m} n! m!} \langle U_n, U_m^{(m+n)} \rangle.$$

2. À l'aide de ce qui précède, démontrer que

$$n \neq m \Longrightarrow \langle L_n, L_m \rangle = 0.$$

3. (a) Toujours à l'aide de la question 1 (b), démontrer que

$$\langle L_n, L_n \rangle = \frac{(2n)!}{2^{2n} n!^2} \int_{-1}^{1} (1 - t^2)^n dt.$$

- (b) Pour $k \in \mathbb{N}$, on note $J_k = \int_{-1}^1 (1 t^2)^k dt$. Intégrer J_k par parties et obtenir une relation entre J_k et J_{k-1} lorsque $k \ge 1$.
- (c) En déduire une expression de J_n , puis que

$$\langle L_n, L_n \rangle = \frac{2}{2n+1}.$$

Partie D. Un mode de calcul des coordonnées.

Pour un entier ide [0, n], on pose

$$\varphi_i : \left\{ \begin{array}{ccc} \mathbb{R}_n[X] & \to & \mathbb{R} \\ P & \mapsto & \langle L_i, P \rangle \end{array} \right. .$$

- 1. Démonter que pour un i donné, φ_i est linéaire.
- 2. Démontrer

$$\forall P \in \mathbb{R}_n[X] \quad P = \sum_{i=0}^n \frac{2i+1}{2} \varphi_i(P) L_i.$$

Indication : On pourra écrire la décomposition théorique de P sur la base des L_k et, pour i fixé, calculer $\varphi_i(P)$.