CHAPITRE 2 : Géométrie des molécules

Programme

Géométrie et polarité des entités chimiques Structure géométrique d'une molécule ou d'un ion polyatomique. Modèle VSEPR. Représentation de Cram.	Associer qualitativement la géométrie d'une entité à la minimisation de son énergie. Prévoir et interpréter les structures de type AX_n avec $n \le 4$ et AX_pE_q , avec $p+q=3$ ou 4.
Électronégativité : liaison polarisée, moment dipolaire, molécule polaire.	Comparer les électronégativités de deux atomes à partir de données ou de leurs positions dans le tableau périodique. Prévoir la polarisation d'une liaison à partir des électronégativités comparées des deux atomes mis en jeu. Relier l'existence ou non d'un moment dipolaire permanent à la structure géométrique d'une molécule. Déterminer direction et sens du vecteur moment dipolaire d'une liaison ou d'une molécule.

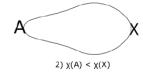
Document 1 : Figures de répulsion

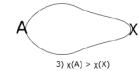
Nombres de doublets entourant l'atome central	2	3	4
Arrangement des doublets autour de l'atome central	$\alpha = 180^{\circ}$	$\alpha = 120^{\circ}$	α = 109,5°
Polyèdre	segment	triangle	tétraèdre

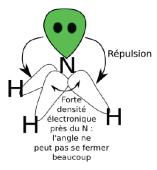
Document 2 : Géométrie les plus courantes des molécules

<u>n</u> + p =	Figure de répulsion	AXaEa	Géométrie de l'entité chimique	Exemple
2	segment	AX ₂	linéaire	BeH₂
3		AX3	trigonale plane α = 120°	ВН3
,	triangle	AX ₂ E ₁	coudée α < 120°	SO ₂
		AX4	tétraédrique α = 109,5°	CH4
4	u+100.F* tétraèdre	AX3E1	pyramide à base triangulaire α < 109,5°	NH₃
		AX ₂ E ₂	coudée α = 109.5°	H ₂ O

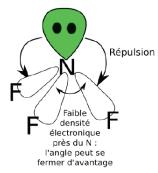

Document 3 : Influence des doublets non liants


Molécule	CH ₄	NH ₃	H ₂ O
Géométrie			
Dessin			
Angle \widehat{HXH}	109,5°	107°	104,5°


Document 4 : Influence d'un électron célibataire


Molécule	NO_2	NO_2^-
Schéma de Lewis		
Géométrie		
Dessin		
Angle <i>ÔNO</i>	134°	105°

Document 5 : Influence de l'électronégativité



Angle HNH: 107,3°

Angle FNF: 102,1°


Document 6 : Polarité des molécules

orante des inc

$$-\delta + 2\delta - \delta \\
H - Be - H$$

$$\overrightarrow{\mu_1} \qquad \overrightarrow{\mu_2}$$

$$\overrightarrow{\mu_1} + \overrightarrow{\mu_2} = \overrightarrow{0}$$

