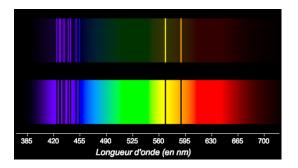
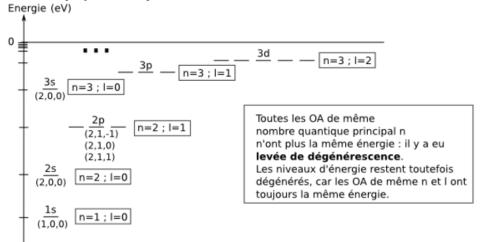
CHAPITRE 1 : Structure de Lewis et mésomérie

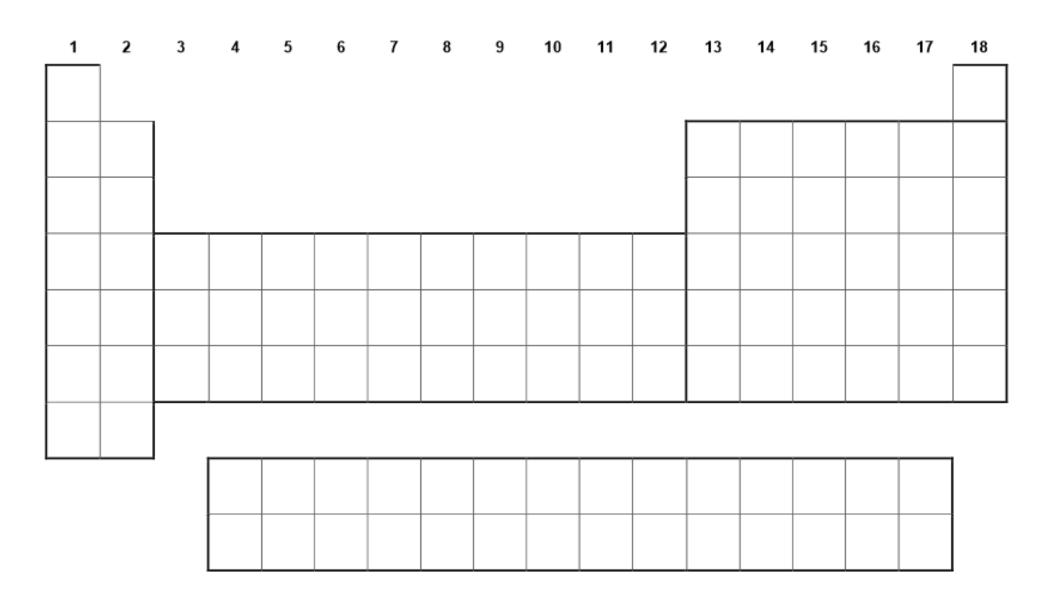

Programme

Notions et contenus	Capacités exigibles
Modèle de Lewis de la liaison covalente	
Liaison covalente localisée ; longueur et énergie de la liaison covalente. Schéma de Lewis d'une molécule ou d'un ion monoatomique ou polyatomique (étude limitée aux éléments des blocs s et p).	Citer l'ordre de grandeur de longueurs et d'énergies de liaison covalente. Déterminer, pour les éléments des blocs s et p, le nombre d'électrons de valence d'un atome à partir de la position de l'élément dans le tableau périodique. Citer les éléments des périodes 1 à 3 du tableau périodique (nom, symbole, numéro atomique). Établir un ou des schémas de Lewis pertinent(s) pour une molécule ou un ion.
Liaison covalente délocalisée : mésomérie.	Identifier et représenter les enchaînements donnant lieu à une délocalisation électronique. Mettre en évidence une éventuelle délocalisation électronique à partir de données expérimentales.

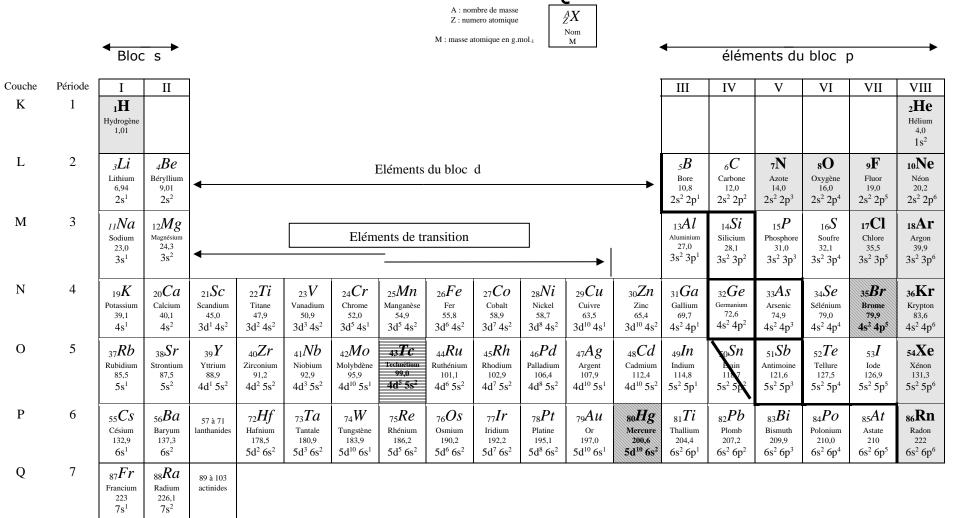
Document 1: Isotopes et abondances naturelles isotopiques

Elément	Z	Isotopes	Abondance naturelle	Commentaire		
Lludrogàno	1	¹ H	99,99%			
Hydrogène	1	² H	0,01%	Appelé deutérium (parfois noté D)		
		¹² C	98,9%			
Carbone	6	¹³ C	1,1%	Utile pour la RMN du carbone		
Carbone	0	¹⁴ C	Traces	Radioactif. Utilisé pour la datation de l matière organique		
		¹⁶ O	99,76%	matter e organique		
Oxygène	8	¹⁷ O	0,038%	Utilisable en RMN		
		¹⁸ O	0,20%	Utilisé en imagerie médicale		
		²³⁴ U	0,0056%	Radioactif		
		²³⁵ U		Radioactif. Utilisé dans les réacteurs		
Uranium	92		0,720%	nucléaires. On augmente sa proportion		
				dans l'uranium enrichi		
		²³⁸ U	99,2745%	Radioactif		

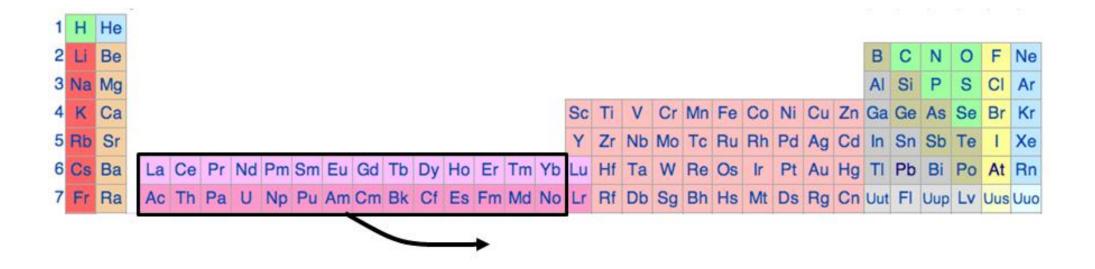

Document 2 : Spectres d'émission (en haut) et d'absorption (en bas) du sodium

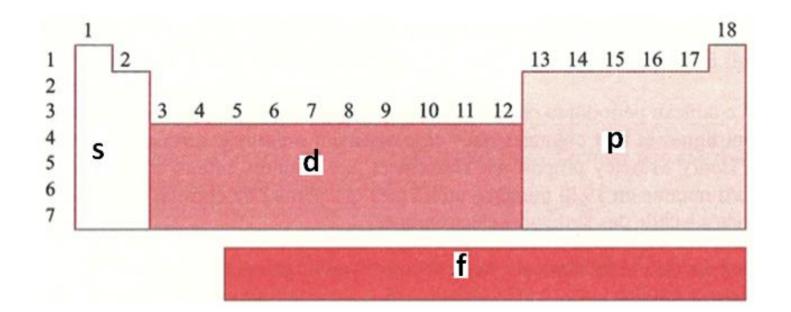


Document 3: Spectroscopie d'absorption



Document 4 : Diagramme énergétique des OA (orbitales atomiques = sous-couches) d'un atome polyélectronique


CLASSIFICATION PERIODIQUE DES ELEMENTS


lanthanides	57 La Lanthane 138,9	58 Ce Cérium 140,1	59 Pr Praseodyme 140,9	60Nd Néodyme 144,2	61Pm Prométhium 145	62 Sm Samarium 150,4	63Eu Europium 152,0	64 G d Gadolinium 157,3	65Tb Terbium 158,9	66Dy Dysprosium 162,5	67HO Holmium 164,9	68Er Erbium 167,8	69Tm Thulium 168,9	70 Yb Ytterbium 173,0	71Lu Lutétium 176,0
actinides	89Ac Actinium 227	90Th Thorium 232,0	91Pa Protactinium 231	92 U Uranium 238,0	93 Np Neptunium 237	94 P u Plutonium 242	95 A m Américium 243	96 Cm Curium 247	97 B K Berkélium 247	98 C f Culifornium 249	99 Es Einsteinium 254	100 fm fermium 255	101Md Mendélévium 256	102No Nobelium 254	103LW Lawrencium 257

Etat standard à 25°C:

Na	Hg	Ne	Np
solide	liquide	gaz	Obtenu par synthèse

Blocs:

Document 5 : Nombre d'électrons de valence des principaux éléments

Elément	С	N	О	X (halogène)
Nombre d'électrons de valence	4	5	6	7

Document 6 : Composés déficients en électrons

Document 7 : Composés hypervalents

Document 8 : Méthode pour établir une formule de Lewis

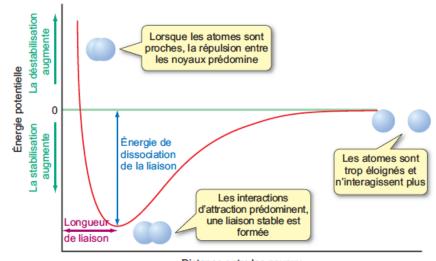
1) A partir des configurations électroniques à l'état fondamental, déterminer le nombre d'électrons de valence de chaque atome. Les sommer, sans oublier d'ajouter ou retrancher des électrons si l'édifice est chargé, pour obtenir le **nombre total d'électrons de valence** (N_{ev}) de l'édifice (molécule ou ion).

Diviser cette valeur par 2 pour obtenir le **nombre de doublets** $(N_d = \frac{N_{ev}}{2})$. (Si N_{ev} est impair, $N_d = \frac{N_{ev}-1}{2}$ auquel il faudra ajouter un électron célibataire).

2) Positionner les atomes.

- La structure est souvent symétrique et compacte ;
- L'atome central est souvent le moins électronégatif ;
- H et F ne sont jamais centraux (car toujours monovalents), Cl, Br et I sont rarement centraux.
- 3) Créer des liaisons simples entre l'atome central et les atomes terminaux.
- 4) Compléter l'octet pour les atomes terminaux en ajoutant des doublets non liants.
- 5) Utiliser les derniers doublets pour l'atome central. S'il n'y a plus suffisamment de doublets pour assurer l'octet de l'atome central, envisager le déplacement de doublets non liants pour former des liaisons multiples.
- 6) Attribuer à chaque atome sa charge formelle.
- 7) Faire figurer les lacunes éventuelles.

8) Vérifier!


- tous les doublets doivent être placés ;

- les éléments de la 2ème période ne doivent pas dépasser l'octet ;
- la somme des charges formelles doit valoir la charge globale.

Si plusieurs formules de Lewis sont possibles (pour un même enchaînement d'atomes), la plus probable est celle qui privilégie (dans l'ordre) :

- les formules pour lesquelles C, N, O et F vérifient l'octet ;
- les formules présentant le moins de charges formelles (privilégier l'hypervalence des atomes à partir de la <u>3ème</u> période plutôt que l'apparition de charges formelles) ;
- les formules présentant les charges formelles négatives sur les atomes les plus électronégatifs

Document 9 : Mise en évidence de la liaison chimique

Distance entre les noyaux

Document 10 : Exemples de longueurs de liaison

	C-C	C-N	C-0	C-F			C-C	C=C	$C \equiv C$
d _{A-B} (pm)	154	147	143	135		d _{A-B} (pm)	154	134	120
Tableau 6.a.							Tablea	u 6.b.	

Document 11 : Exemples d'énergies de liaison

	C-C	C=C	$C \equiv C$	C-N	C-0	C-F
D_{A-B} (kJ·mol ⁻¹)	346	602	835	305	356	439

Document 12 : Exemples illustrant les règles de contribution d'une formule mésomère

Règle 1	Règle 2
Règle 3	
$\begin{bmatrix} H & O & H & O \\ & & & & & \\ & & & & & \\ & & & & &$	