Devoir maison n°5 A rendre pour le Jeudi 13 novembre 2025

Fonctions hyperboliques

On considère les fonctions cosinus hyperbolique et sinus hyperboliques définies sur \mathbb{R} par

$$ch(x) = \frac{e^x + e^{-x}}{2}$$
 et $sh(x) = \frac{e^x - e^{-x}}{2}$.

On considère également la fonction tangente hyperbolique définie sur \mathbb{R} par

$$th(x) = \frac{sh(x)}{ch(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

1. (a) Montrer que pour tout $(x, y) \in \mathbb{R}^2$.

$$ch(x+y) = ch(x)ch(y) + sh(x)sh(y) \quad \text{et} \quad sh(x+y) = sh(x)ch(y) + ch(x)sh(y).$$

En déduire que pour tout $(x, y) \in \mathbb{R}^2$,

$$\operatorname{ch}(x-y) = \operatorname{ch}(x)\operatorname{ch}(y) - \operatorname{sh}(x)\operatorname{sh}(y) \quad \text{et} \quad \operatorname{sh}(x-y) = \operatorname{sh}(x)\operatorname{ch}(y) - \operatorname{ch}(x)\operatorname{sh}(y).$$

- (b) Déduire de la question précédente que pour tout $x \in \mathbb{R}$, $\operatorname{ch}^2(x) \operatorname{sh}^2(x) = 1$.
- (c) Déduire des deux questions précédentes que pour tout $x \in \mathbb{R}$,

$$ch(2x) = ch^{2}(x) + sh^{2}(x) = 2ch^{2}(x) - 1 = 1 + 2sh^{2}(x)$$
 et $sh(2x) = 2sh(x)ch(x)$.

- 2. (a) Montrer que pour tout $y \in \mathbb{R}$, l'équation $\operatorname{sh}(x) = y$ admet une unique solution $x \in \mathbb{R}$.
 - (b) En déduire que sh est bijective de \mathbb{R} sur \mathbb{R} , de bijection réciproque argsh définie pour tout $x \in \mathbb{R}$ par $\operatorname{argsh}(x) = \ln(x + \sqrt{x^2 + 1})$.
 - (c) Montrer que la fonction argsh est dérivable sur \mathbb{R} et que pour tout $x \in \mathbb{R}$,

$$\operatorname{argsh}'(x) = \frac{1}{\sqrt{x^2 + 1}}.$$

- 3. (a) Montrer que pour tout $y \in [1, +\infty[$, l'équation $\operatorname{ch}(x) = y$ admet une unique solution $x \in \mathbb{R}_+$.
 - (b) En déduire que che st bijective de \mathbb{R}_+ sur $[1, +\infty[$, de bijection réciproque argch définie pour tout $x \in [1, +\infty[$ par $\operatorname{argch}(x) = \ln(x + \sqrt{x^2 1})$.
 - (c) Montrer que la fonction argch est dérivable sur $]1,+\infty[$ et que pour tout x>1,

$$\operatorname{argch}'(x) = \frac{1}{\sqrt{x^2 - 1}}.$$

- 4. (a) Vérifier que la fonction the est impaire.
 - (b) Justifier que the st dérivable sur \mathbb{R} et calculer sa dérivée. En déduire que la fonction the st strictement croissante sur \mathbb{R} et calculer ses limites.

- (c) Montrer que pour tout $y \in]-1,1[$, l'équation $\operatorname{th}(x)=y$ admet une unique solution
- (d) En déduire que the st bijective de \mathbb{R} sur]-1,1[, de bijection réciproque argth définie pour tout $x \in]-1,1[$ par $\operatorname{argth}(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$. (e) Montrer que la fonction argth est dérivable sur]-1,1[et que pour tout $x \in]-1,1[$,

$$\operatorname{argth}'(x) = \frac{1}{1 - x^2}.$$

(f) Pour tout $n \in \mathbb{N}^*$, conjecturer une expression pour la dérivée n-ième de argth puis la montrer par récurrence.