Programme de colles 7

Semaine du 10/11

Nombres complexes

- 1. Pour tout $(p,q) \in \mathbb{R}^2$, $\cos(p) + \cos(q) = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$.
- 2. Racines d'un trinôme du second degré à cœfficients complexes.
- 3. Description des racines n-ièmes de l'unité.
- 4. Surjectivité de l'exponentielle complexe.

Fonctions d'une variable réelle

- 1. Existence et unicité des parties paire et impaire d'une fonction.
- 2. Pour tout $(x, y) \in (\mathbb{R}_{+}^{*})^{2}$, $\ln(xy) = \ln(x) + \ln(y)$.
- $3. \lim_{x \to +\infty} \frac{\ln(x)}{x} = 0^+.$
- 4. Pour tout x > -1, $\ln(1+x) \leq x$.
- 5. Dérivée de la fonction exponentielle.
- 6. Pour tout $(x, y) \in \mathbb{R}^2$, $\exp(x + y) = \exp(x) \exp(y)$.
- 7. Dérivée et courbe de arcsin.
- 8. Dérivée et courbe de arccos.
- 9. Dérivée et courbe de arctan.
- 10. Etude de ch (variations, limites, courbe).
- 11. Etude de sh (variations, limites, courbe).

Exercices

Nombres complexes

- Propriété des parties réelle et imaginaire d'un nombre complexe.
- Conjugué et module d'un nombre complexe.
- Représentation géométrique des nombres complexes.
- Nombres complexes de module 1.
- Formule de Moivre. Application pour le calcul de $\cos(n\theta)$ et $\sin(n\theta)$.
- Formules d'Euler. Application pour le calcul de $\cos^n(\theta)$ et $\sin^n(\theta)$.
- Forme exponentielle d'un nombre complexe. Utilisation des propriétés de l'argument.
- Recherche de racines carrées d'un nombre complexe sous forme exponetielle ou forme algébrique.
- Résolution d'équations du second degré à cœfficients complexes.
- Racines *n*-ièmes de l'unité.
- Exponentielle complexe.

Fonctions d'une variable réelle

- Etudes de fonctions utilisant les fonctions usuelles : logarithme néperien, exponentielle, cosinus, sinus, arccos, arcsin, arctan, ch, sh...
- Utilisation des croissances comparées pour déterminer des limites.