Devoir maison n°6 A rendre pour le Lundi 24 novembre 2025

Problème 1 : Une équation différentielle d'ordre 2 à cœfficients non constants

Le but de ce problème est de résoudre sur $]0, +\infty[$ l'équation différentielle

$$(E): \forall x > 0, x^2y''(x) + 5xy'(x) + 3y(x) = x^2.$$

Partie I : Résolution par changement de fonction

Soit $y:]0, +\infty[\longrightarrow \mathbb{R}$. On pose pour tout réel $t, z(t) = y(e^t)$.

- 1. Montrer que pour tout $x \in]0, +\infty[$, on a $y(x) = z(\ln(x))$.
- 2. Justifier que z est deux fois dérivable sur \mathbb{R} (i.e. z et z' sont dérivables sur \mathbb{R}) si et seulement si y est deux fois dérivable sur $[0, +\infty[$.
- 3. Montrer que y est solution de (E) sur $]0, +\infty[$ si et seulement si z est solution sur \mathbb{R} de

$$(F): \forall t \in \mathbb{R}, z''(t) + 4z'(t) + 3z(t) = e^{2t}.$$

- 4. Résoudre (F) sur \mathbb{R} .

 Indication: On pourra chercher une solution particulière de (F) sous la forme $z(t) = ae^{2t}$, où $a \in \mathbb{R}$.
- 5. En déduire les solutions de (E) sur $]0, +\infty[$.

Partie II : Résolution par changement de variable

Soit $y:]0, +\infty[\longrightarrow \mathbb{R}$ une fonction. On pose pour tout $x \in]0, +\infty[, u(x) = x^3y(x)$.

1. Montrer que y est solution de (E) sur $]0, +\infty[$ si et seulement si u est solution sur $]0, +\infty[$ de

$$(G): \forall x \in]0, +\infty[, u''(x) - \frac{u'(x)}{x} = x^3.$$

2. Résoudre (G) et en déduire à nouveau les solutions de (E) sur $]0,+\infty[$.

Problème 2 : Une équation différentielle d'ordre 1 non linéaire

Le but de ce problème est de résoudre sur \mathbb{R}_+^* l'équation différentielle

$$(E): \forall x \in]0, +\infty[, y'(x) = y\left(\frac{1}{x}\right).$$

On considère $f:]0, +\infty[\longrightarrow \mathbb{R}$ une fonction dérivable sur \mathbb{R}_+^* solution de l'équation (E) sur \mathbb{R}_+^* .

- 1. (a) En utilisant le fait que f est solution de (E), justifier que f' est dérivable sur $]0, +\infty[$.
 - (b) Démontrer que f est solution sur \mathbb{R}_+^* de l'équation

$$(E'): \forall x \in]0, +\infty[, x^2y''(x) + y(x) = 0.$$

- 2. On introduit la fonction $z: \mathbb{R} \to \mathbb{R}$ définie pour tout réel x par $z(x) = f(e^x)$.
 - (a) Justifier que z est deux fois dérivable et montrer que z est solution sur $\mathbb R$ de l'équation

$$(E''): \forall x \in \mathbb{R}, y''(x) - y'(x) + y(x) = 0.$$

- (b) Donner les solutions de (E'') sur \mathbb{R} .
- (c) En déduire qu'il existe deux réels $(\lambda, \mu) \in \mathbb{R}^2$ tels que

$$\forall x \in \mathbb{R}_+^*, f(x) = \sqrt{x} \left(\lambda \cos \left(\frac{\sqrt{3}}{2} \ln(x) \right) + \mu \sin \left(\frac{\sqrt{3}}{2} \ln(x) \right) \right).$$

- (d) Calculer f(1) puis f'(x) pour tout $x \in \mathbb{R}_+^*$.
- (e) En calculant f'(1) de deux manières différentes, montrer que

$$\lambda = \sqrt{3}\mu.$$

(f) En déduire que

$$\forall x \in \mathbb{R}_+^*, f(x) = 2\mu\sqrt{x}\cos\left(\frac{\sqrt{3}}{2}\ln(x) - \frac{\pi}{6}\right).$$

3. Réciproquement, vérifier que toute fonction g définie sur \mathbb{R}_+^* par

$$\forall x \in]0, +\infty[, g(x) = c\sqrt{x}\cos\left(\frac{\sqrt{3}}{2}\ln(x) - \frac{\pi}{6}\right),$$

où c est une constante réelle, est une solution de (E) sur \mathbb{R}_+^* .

- 4. Conclure quant aux solutions de (E) sur \mathbb{R}_{+}^{*} .
- 5. Montrer qu'il existe une unique solution f de (E) vérifiant la condition $f(1) = \sqrt{3}$ et donner l'expression de cette fonction. Calculer $\lim_{x\to 0^+} f(x)$.