Arithmétique

10.1 Divisibilité

10.1.1 Définition et division euclidienne

Définition 1: Divisibilité

Soient $(a, b) \in \mathbb{Z}^2$.

On dit que a divise b, et on note a|b, s'il existe un entier relatif $k \in \mathbb{Z}$ tel que b = ak. Dans ce cas, on dit que a est un diviseur de b, ou que b est un multiple de (ou est divisible par) a.

Remarque 1. • 1 et -1 divisent tous les entiers relatifs.

- 0 est divisible par tous les entiers relatifs.
- Soit $a \in \mathbb{Z}$. Alors a et -a divisent a.

Proposition 1: Propriétés de la divisibilité

Soient $(a, b, c) \in \mathbb{Z}^3$.

- 1. Si a divise b et c, alors pour tout couple $(u, v) \in \mathbb{Z}^2$, a divise bu + cv.
- 2. Si a divise b et b divise c, alors a divise c.
- 3. Si a divise b, et $b \neq 0$, alors $|a| \leq |b|$.
- 4. Si a divise b et b divise a, alors |a| = |b|.

Démonstration.

1. Par hypothèse, il existe $(k,l)\in\mathbb{Z}^2$ tel que b=ak et c=al. Soit $(u,v)\in\mathbb{Z}^2.$ On a alors

$$bu + cv = aku + alv = a(ku + lv)$$

avec $ku + lv \in \mathbb{Z}$ donc a divise bu + cv.

- 2. Par hypothèse, il existe $(k,l) \in \mathbb{Z}^2$, b = ak et c = bl donc c = a(kl) avec $kl \in \mathbb{Z}$, ce qui prouve que a divise c.
- 3. Par hypothèse, il existe $k \in \mathbb{Z}$ tel que b = ak donc |b| = |a||k|. Puisque $b \neq 0$, on a nécessairement $k \neq 0$ donc $|k| \geqslant 1$ et il en découle que

$$|b| = |a||k| \geqslant |a|.$$

- 4. Si b = 0, puisque b divise a, alors a = 0 et on a bien |a| = |b|.
 - Si $b \neq 0$, d'après le point précédent, puisque a divise b alors $|a| \leq |b|$.

De plus, puisque a divise b et que $b \neq 0$, on a nécessairement $a \neq 0$ et d'après le point précédent, puisque b divise a, on en déduit que $|b| \leq |a|$.

Ainsi, on a $|a| \leq |b|$ et $|b| \leq |a|$, d'où |a| = |b|.

Remarque 2. En particulier, si a divise b et c, alors a divise b + c, a divise b - c, a divise tous les multiples de b et tous les multiples de b divise b.

En revanche, les réciproques sont fausses : 6 divise 2+4 mais ne divise ni 2 ni 4, 6 divise 3×4 mais ne divise ni 3 ni 4...

Théorème 1: Théorème de la division euclidienne

Soient $(a, b) \in \mathbb{Z}^2$ avec $b \neq 0$.

Il existe un unique couple $(q, r) \in \mathbb{Z}^2$ tel que

$$\begin{cases} a = bq + r \\ 0 \leqslant r < |b| \end{cases}.$$

On dit que q est le quotient de la division euclidienne de a par b et que r en est le reste.

Démonstration.

• Montrons l'existence d'un tel couple (q, r).

1er cas: b > 0

Soit $A = \{k \in \mathbb{Z}, bk \leqslant a\}.$

Tout d'abord, puisque $b > 0, bk \le a \Leftrightarrow k \le \frac{a}{b}$. Ceci prouve que A n'est pas vide.

De plus, A est majorée par $\frac{a}{b}$. Ainsi, A est une partie de \mathbb{Z} non vide et majorée donc A admet un plus grand élément (cf. chapitre « Nombres réels »).

Soit $q = \max(A)$. Posons r = a - bq. Puisque $q \in A, bq \leq a$ donc $r = a - bq \geq 0$.

De plus, $q + 1 \notin A$ donc b(q + 1) > a, ce qui implique que r = a - bq < b = |b|.

On a donc bien trouvé un couple (q, r) qui convient.

2ème cas : b < 0

Dans ce cas, -b > 0. D'après le premier cas, il existe un couple (q, r) d'entiers relatifs tel que a = (-b)q + r et $0 \le r < -b = |b|$.

En posant q' = -q, on a bien a = bq' + r avec $(q', r) \in \mathbb{Z}^2$ et $0 \le r < |b|$.

• Montrons l'unicité d'un tel couple (q, r).

Supposons qu'il existe deux couples (q,r) et (q',r') d'entiers relatifs tels que

$$\begin{cases} a = bq + r \\ 0 \leqslant r < |b| \end{cases} \text{ et } \begin{cases} a = bq' + r' \\ 0 \leqslant r' < |b| \end{cases}.$$

On a alors bq + r = bq' + r' donc b(q - q') = r' - r ce qui implique que |b||q - q'| = |r' - r|. Or, -|b| < r' - r < |b| donc |r' - r| < |b|, ce qui implique que |b||q - q'| < |b|. Il en découle que |q - q'| = 0 donc q = q' et par suite, r = r', ce qui prouve bien l'unicité d'un tel couple (q, r).

Exemple 1. 1. La division euclidienne de -17 par 5 est $-17 = -4 \times 5 + 3$. Le quotient de la division euclidienne de -17 par 5 est -4 et le reste vaut 3.

2. La division euclidienne de 29 par -6 est $29 = (-6) \times (-4) + 5$. Le quotient de la division euclidienne de 29 par -6 est -4 et le reste vaut 5.

Année 2025-2026 2 / 13 Alex Panetta

10.1.2 PGCD et PPCM

Définition 2: PGCD de deux entiers relatifs

Soient $(a, b) \in \mathbb{Z}^2$ avec $(a, b) \neq (0, 0)$.

On appelle PGCD des entiers a et b, noté PGCD(a,b) ou $a \wedge b$, le plus grand diviseur commun à a et b.

Exemple 2. L'ensemble des diviseurs de 60 est

$$\{-60, -30, -20, -15, -12, -10, -6, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\}$$

et l'ensemble des diviseurs de 36 est

$$\{-36, -18, -12, -9, -6, -4, -3, -2, -1, 1, 2, 3, 4, 6, 9, 12, 18, 36\}.$$

On constate que $60 \land 36 = 12$.

Remarque 3. • Si (a, b) = (0, 0), a et b étant divisibles par tous les entiers relatifs, il n'existe pas de plus grand diviseur commun à a et b.

- Si $a \neq 0$, pour tout $b \in \mathbb{Z}$, $a \wedge b$ est bien défini car l'ensemble des diviseurs de a est majoré par |a|. Ainsi, l'ensemble des diviseurs communs à a et b est une partie de \mathbb{Z} non vide et majorée, donc admet un plus grand élément, ce qui justifie l'existence du PGCD de a et b.
 - On a toujours $a \wedge b \ge 1$. En particulier, c'est un entier naturel non nul.
 - a divise b si et seulement si $a \wedge b = |a|$. En particulier, si $a \neq 0$, alors $a \wedge 0 = a \wedge a = |a|$.

Proposition 2: Algorithme d'Euclide

Soient $(a, b) \in \mathbb{Z}^2$ avec $b \neq 0, |b| \leq |a|$ et b ne divise pas a.

Il existe des suites finies d'entiers $(a_n)_{n \leq p}$, $(b_n)_{n \leq p}$ et $(r_n)_{n \leq p}$ où $p \in \mathbb{N}^*$ telles que :

- $a_0 = a, b_0 = b$ et r_0 est le reste dans la division euclidienne de a par b;
- pour tout $n \le p 1, a_{n+1} = b_n$ et $b_{n+1} = r_n$;
- pour tout $n \leq p, r_n$ est le reste dans la division euclidienne de a_n par b_n ;
- $r_p = 0$.

Le PGCD de a et b est alors le dernier reste non nul apparu dans l'algorithme, i.e.

$$a \wedge b = r_{p-1}$$
.

Remarque 4. Si b divise a, l'algorithme d'Euclide n'est pas nécessaire pour déterminer le PGCD de a et b, puisque dans ce cas, $a \wedge b = |b|$. Si on n'est pas dans ce cas, il est certain que le premier reste obtenu dans l'algorithme d'Euclide n'est pas nul, ce qui assure que $p \ge 1$.

Démonstration. • On pose $a_0 = a$ et $b_0 = b$. D'après le théorème de la division euclidienne, il existe $(q_0, r_0) \in \mathbb{Z}^2$ tels que $a = bq_0 + r_0$ et $0 \le r_0 < |b|$, i.e. $a_0 = b_0q_0 + r_0$.

On pose ensuite $a_1 = b_0, b_1 = r_0$. Il existe alors $(q_1, r_1) \in \mathbb{Z}^2$ tels que $a_1 = b_1 q_1 + r_1$ avec $0 \le r_1 < |b_1| = r_0$.

En réitérant ce procédé, on construit une suite strictement décroissante d'entiers naturels $r_0 > r_1 > \dots$ donc il existe nécessairement un rang $p \in \mathbb{N}^*$ pour lequel $r_p = 0$.

Notons pour tout $n \leq p, a_n = b_n q_n + r_n$ où $q_n \in \mathbb{Z}$.

• Montrons que pour tout $n \leq p, a_n \wedge b_n = b_n \wedge r_n$.

Soit $n \leq p$.

Soit $d \in \mathbb{Z}$.

Montrons que d divise a_n et b_n si et seulement si d divise b_n et r_n .

Supposons que d divise a_n et b_n . Alors d divise $a_n - b_n q_n = r_n$ donc d divise b_n et r_n .

Réciproquement, supposons que d divise b_n et r_n . Alors d divise $b_nq_n+r_n=a_n$ donc d divise a_n et b_n .

On a donc montré que pour tout $n \leq p$, les diviseurs communs à a_n et à b_n sont les diviseurs communs à b_n et à r_n .

A fortiori, $a_n \wedge b_n = b_n \wedge r_n$.

• Ainsi,
$$a \wedge b = a_0 \wedge b_0 = b_0 \wedge r_0 = a_1 \wedge b_1 = \dots = a_p \wedge b_p = b_p \wedge r_p = r_{p-1} \wedge 0 = r_{p-1}$$
.

Exemple 3. Déterminons le PGCD de 51 et 42.

Effectuons l'algorithme d'Euclide.

$$51 = 42 \times 1 + 9$$

$$42 = 9 \times 4 + 6$$

$$9 = 6 \times 1 + 3$$

$$6 = 3 \times 2 + 0$$

donc $51 \land 42 = 3$.

Corollaire 1: Identité de Bézout

Soient $(a, b) \in \mathbb{Z}^2$ avec $(a, b) \neq (0, 0)$. Il existe un couple $(u, v) \in \mathbb{Z}^2$ tel que

$$au + bv = a \wedge b$$
.

Démonstration. Reprenons l'algorithme d'Euclide à l'envers, à partir de l'avant-dernière étape. On a

$$\begin{array}{rcl} a \wedge b & = & r_{p-1} \\ & = & a_{p-1} - b_{p-1}q_{p-1} \\ & = & b_{p-2} - r_{p-2}q_{p-1} \\ & = & b_{p-2} - (a_{p-2} - b_{p-2}q_{p-2})q_{p-1} \\ & = & b_{p-2}(1 + q_{p-2}q_{p-1}) - a_{p-2} \end{array}$$

On voit qu'on a d'abord réussi à écrire $a \wedge b$ comme combinaison linéaire à cœfficients entiers de a_{p-1} et de b_{p-1} , puis de a_{p-2} et de b_{p-2} , etc... En remontant l'algorithme d'Euclide, on arrivera à écrire $a \wedge b$ comme combinaison linéaire à cœfficients entiers de $a_0 = a$ et de $b_0 = b$, c'est à dire qu'on aura trouvé $(u, v) \in \mathbb{Z}^2$ tel que

$$au + bv = a \wedge b$$
.

Exemple 4. Reprenons l'algorithme d'Euclide de 51 et 42. On a

$$3 = 9-6$$

$$= 9-(42-9\times4)$$

$$= 9\times5-42$$

$$= (51-42)\times5-42$$

$$= 51\times5-42\times6$$

En posant u = 5 et v = -6, on a donc $51u + 42v = 3 = 51 \land 42$.

Remarque 5. La réciproque est fausse : s'il existe $d \in \mathbb{N}^*$ et $(u, v) \in \mathbb{Z}^2$ tels que au + bv = d, on ne peut pas affirmer que $a \wedge b = d$ mais simplement que $a \wedge b$ divise d.

En effet, si au+bv=d, puisque $a\wedge b$ divise a et b, alors $a\wedge b$ divise au+bv donc $a\wedge b$ divise d.

Par exemple, $6 \times 9 + (-4) \times 12 = 6$ mais $9 \wedge 12 = 3$.

Corollaire 2: Lien entre diviseurs communs et PGCD

Soit $(a,b) \in \mathbb{Z}^2$ avec $(a,b) \neq (0,0)$.

Soit d un diviseur commun à a et à b.

Alors d divise $a \wedge b$.

Démonstration. D'après l'identité de Bézout, il existe $(u, v) \in \mathbb{Z}^2$ tel que $au + bv = a \wedge b$. Puisque d divise a et b, alors d divise $au + bv = a \wedge b$.

Remarque 6. Ceci signifie que $a \wedge b$ est non seulement le plus grand diviseur commun à a et à b, mais également qu'il est divisible par tous les diviseurs communs à a et à b.

Exemple 5. L'ensemble des diviseurs communs à 60 et 36 est $\{-12, -6, -4, -3, -2, -1, 1, 2, 3, 4, 6, 12\}$. On constate que tous les diviseurs communs à 60 et 36 divisent $12 = 60 \land 36$.

Définition 3: Entiers premiers entre eux

Soient $(a, b) \in \mathbb{Z}^2$ avec $(a, b) \neq (0, 0)$.

On dit que a et b sont premiers entre eux si $a \wedge b = 1$.

Exemple 6. 91 et 68 sont premiers entre eux. Vérifions-le par l'algorithme d'Euclide.

$$91 = 68 \times 1 + 23$$

$$68 = 23 \times 2 + 22$$

$$23 = 22 \times 1 + 1$$

Le dernier reste non nul de l'algorithme d'Euclide est 1 donc $91 \land 68 = 1$.

Théorème 2: Théorème de Bézout

Soient $(a, b) \in \mathbb{Z}^2$, avec $(a, b) \neq (0, 0)$.

Les entiers a et b sont premiers entre eux si et seulement s'il existe un couple $(u, v) \in \mathbb{Z}^2$ tel que

$$au + bv = 1$$
.

Démonstration. On a déjà vu qu'il existe $(u, v) \in \mathbb{Z}^2$ tel que $au + bv = a \wedge b$.

Ainsi, si $a \wedge b = 1$, il existe bien $(u, v) \in \mathbb{Z}^2$ tel que au + bv = 1.

Réciproquement, supposons qu'il existe $(u, v) \in \mathbb{Z}^2$ tel que au + bv = 1.

Alors $a \wedge b$ divise au + bv = 1 donc $a \wedge b$ divise 1. A fortiori, $a \wedge b \leq 1$. Or, $1 \leq a \wedge b$ donc $a \wedge b = 1$.

Exemple 7. Pour tout $n \in \mathbb{Z}$, (n+1) - n = 1 donc n et n+1 sont premiers entre eux d'après le théorème de Bézout.

Remarque 7. Une conséquence importante est la suivante : si $(a,b) \in \mathbb{Z}^2 \neq (0,0)$, alors $\frac{a}{a \wedge b}$ et $\frac{b}{a \wedge b}$ sont premiers entre eux.

Année 2025-2026 5 / 13 Alex Panetta

Notons tout d'abord que $\frac{a}{a \wedge b}$ et $\frac{b}{a \wedge b}$ sont bien des entiers car $a \wedge b$ divise a et b (et n'est pas nul).

D'après l'identité de Bézout, il existe $(u, v) \in \mathbb{Z}^2$ tel que

$$au + bv = a \wedge b$$
.

En divisant cette identité par $a \wedge b \neq 0$, on en déduit que

$$\frac{a}{a \wedge b}u + \frac{b}{a \wedge b}v = 1,$$

ce qui implique d'après le théorème de Bézout que $\frac{a}{a \wedge b}$ et $\frac{b}{a \wedge b}$ sont premiers entre eux.

Exemple 8. On a vu que $60 \wedge 36 = 12$. On a alors $\frac{60}{12} = 5, \frac{36}{12} = 3$ et $5 \wedge 3 = 1$.

Corollaire 3: Lemme de Gauss

Soient $(a, b, c) \in \mathbb{Z}^3$.

Si a divise bc et a et b sont premiers entre eux, alors a divise c.

Démonstration. Puisque a et b sont premiers entre eux, d'après le théorème de Bézout, il existe $(u, v) \in \mathbb{Z}^2$ tel que au + bv = 1. En multipliant cette identité de Bézout par c, on obtient acu + bcv = c.

Puisque a divise a et a divise bc par hypothèse, on en déduit que a divise acu + bcv = c, donc a divise c.

Corollaire 4: Lemme d'Euclide

Soient $(a, b, c) \in \mathbb{Z}^3$.

Supposons que a et b divisent c et que a et b sont premiers entre eux.

Alors ab divise c.

Démonstration. Puisque a et b divisent c, il existe $(k, l) \in \mathbb{Z}^2$ tels que c = ak = bl.

Puisque ak = bl, alors a divise bl. Or, a et b sont premiers entre eux donc d'après le lemme de Gauss, on en déduit que a divise l.

Ainsi, il existe $u \in \mathbb{Z}$ tel que l = au d'où c = bl = abu, ce qui prouve que ab divise c.

Exemple 9. Puisque 3 et 5 divisent 30 et que 3 et 5 sont premiers entre eux, on déduit du lemme d'Euclide que $3 \times 5 = 15$ divise 30.

En revanche, le résultat n'est plus forcément vrai si a et b ne sont pas premiers entre eux. En effet, 2 divise 12, 4 divise 12 mais $2 \times 4 = 8$ ne divise pas 12.

Définition 4: PPCM de deux entiers relatifs

Soient $(a, b) \in \mathbb{Z}^2$ deux entiers non nuls.

On appelle PPCM de a et b, noté PPCM(a,b) ou $a \vee b$, le plus petit multiple commun strictement positif à a et à b.

Remarque 8. • Autrement dit, $a \lor b = \min\{n \in \mathbb{N}^*, a \text{ divise } n \text{ et } b \text{ divise } n\}$.

L'ensemble $\{n \in \mathbb{N}^*, a \text{ divise } n \text{ et } b \text{ divise } n\}$ est non vide car il contient |ab|. Il admet donc un plus petit élément puisque c'est une partie de \mathbb{N} non vide, ce qui justifie l'existence du PPCM de a et b.

• On peut définir pour tout $a \in \mathbb{Z}$, PPCM(a, 0) = 0.

Exemple 10. • Pour tout $(a, b) \in \mathbb{Z}^2$, a divise b si et seulement si $a \vee b = |b|$.

En particulier, pour tout $a \in \mathbb{Z}^*$, $a \vee a = |a|$.

• Pour tout $(a, b) \in (\mathbb{Z}^*)^2$, |ab| est un multiple commun strictement positif à a et à b donc par définition $a \lor b \le |ab|$, l'inégalité pouvant être stricte.

En effet, $3 \lor 9 = 9 < 3 \times 9$.

En fait, on a même pour tout $(a, b) \in \mathbb{Z}^2$, $a \vee b \leq |ab|$.

- Si $(a, b) \in (\mathbb{Z}^*)^2$, alors $a \vee b \geqslant \max(|a|, |b|)$.
- $6 \lor 9 = 18$.

Proposition 3: Lien entre multiples communs et PPCM

Soient $(a, b) \in \mathbb{Z}^2$. Soit m un multiple commun à a et à b.

Alors $a \vee b$ divise m.

Autrement dit, le PPCM de a et b divise tous les multiples communs à a et à b.

Démonstration. • Si a=0 ou b=0, alors $a\vee b=0$ et tout multiple commun à a et à b est nécessairement nul, donc le résultat est vrai.

• Supposons que $a \neq 0$ et $b \neq 0$.

On a nécessairement $a \lor b > 0$.

Effectuons la division euclidienne de m par $a \vee b$.

Il existe $(q,r) \in \mathbb{Z}^2$ avec $0 \le r < a \lor b$ tel que $m = (a \lor b)q + r$, d'où $r = m - (a \lor b)q$.

Puisque a divise m et a divise $a \vee b$, alors a divise $m - (a \vee b)q = r$.

Par le même raisonnement, on montre que b divise r.

Ainsi, r est un multiple commun positif à a et à b.

Si on avait r > 0, ceci contredirait la minimalité de $a \vee b$ parmi les multiples communs strictement positifs à a et à b donc r = 0.

Il en découle que $m = (a \lor b)q$ donc $a \lor b$ divise m.

Remarque 9. Ceci signifie que, si a et b sont non nuls, $a \lor b$ est non seulement le plus petit multiple commun strictement positif à a et à b, mais également qu'il divise tous les multiples communs à a et à b.

Exemple 11. Tous les multiples communs à 6 et à 9 sont divisibles par $6 \lor 9 = 18$.

Lemme 1

Soit $(a, b) \in \mathbb{Z}^2$. Soit $k \in \mathbb{Z}$.

On a

$$(ka) \vee (kb) = |k|(a \vee b).$$

Autrement dit, PPCM(ka, kb) = |k|PPCM(a, b).

Démonstration. • Si k = 0, le résultat est évident.

• Supposons que $k \neq 0$.

On sait que $a \lor b$ est un multiple commun à a et à b donc $k(a \lor b)$ est un multiple commun à ka et à kb. D'après la proposition précédente, on en déduit que $(ka) \lor (kb)$ divise $k(a \lor b)$.

Réciproquement, soit $m = (ka) \vee (kb)$. Alors m est un multiple commun à ka et à kb donc $\frac{m}{k}$ est un multiple commun à a et à b. D'après la proposition précédente, on en déduit que $(a \vee b)$ divise $\frac{m}{k}$ donc $k(a \vee b)$ divise m, i.e. $k(a \vee b)$ divise $(ka) \vee (kb)$.

On a donc montré que $k(a \vee b)$ divise $(ka) \vee (kb)$ et que $(ka) \vee (kb)$ divise $k(a \vee b)$.

On en conclut que $|k(a \vee b)| = |(ka) \vee (kb)|$ d'où $(ka) \vee (kb) = |k|(a \vee b)$.

Proposition 4: Lien entre PGCD et PPCM

Soient $(a,b) \in \mathbb{Z}^2 \neq (0,0)$.

Alors

$$(a \wedge b) \times (a \vee b) = |ab|.$$

Autrement dit, $PGCD(a, b) \times PPCM(a, b) = |ab|$.

Démonstration.

•1er cas : $a \wedge b = 1$

Montrons dans ce cas que $a \lor b = |ab|$.

Puisque ab est un multiple commun à a et à b, d'après la proposition précédente, on sait que $a \lor b$ divise ab.

Réciproquement, puisque a et b divisent $a \lor b$ et que a et b sont premiers entre eux, on déduit du lemme d'Euclide que ab divise $a \lor b$.

On a donc montré que $a \lor b$ divise ab et que ab divise $a \lor b$, ce qui implique que

$$|ab| = |a \lor b| = a \lor b.$$

•2ème cas : cas général

On sait que $\frac{a}{a \wedge b}$ et $\frac{b}{a \wedge b}$ sont premiers entre eux.

D'après le lemme précédent et le premier cas, on en déduit que

$$a\vee b = \left((a\wedge b)\times\frac{a}{a\wedge b}\right)\vee\left((a\wedge b)\times\frac{b}{a\wedge b}\right) = (a\wedge b)\times\left(\frac{a}{a\wedge b}\vee\frac{b}{a\wedge b}\right) = (a\wedge b)\times\frac{|a|}{a\wedge b}\times\frac{|b|}{a\wedge b}$$
 d'où $|ab| = (a\wedge b)\times(a\vee b)$.

Exemple 12. On a bien $(6 \land 9) \times (6 \lor 9) = 3 \times 18 = 54 = 9 \times 6$.

Corollaire 5

Soient $(a, b) \in \mathbb{Z}^2$ avec $a \neq 0$ et $b \neq 0$.

Alors $a \lor b = |ab|$ si et seulement si $a \land b = 1$.

Autrement dit, PPCM(a, b) = |ab| si et seulement si PGCD(a, b) = 1.

Démonstration. Si a et b sont premiers entre eux, on a montré dans la proposition précédente que $|ab| = a \vee b$.

Réciproquement, supposons que $a \lor b = |ab|$. D'après la proposition précédente, on sait que $(a \land b) \times (a \lor b) = |ab|$ d'où $(a \land b) \times |ab| = |ab|$.

Puisque $a \neq 0$ et $b \neq 0$, alors $|ab| \neq 0$ donc on peut simplifier par |ab| et on obtient $a \wedge b = 1$.

10.2 Nombres premiers

10.2.1 Définition et premières propriétés

Définition 5: Nombre premier

Soit p un entier supérieur ou égal à 2.

On dit que p est un nombre premier s'il possède exactement deux diviseurs positifs : 1 et lui-même.

Remarque 10. • Il est important de noter qu'au vu de la définition, 1 N'EST PAS un nombre premier.

- Si un nombre $n \ge 2$ n'est pas premier, alors il admet un diviseur strict d tel que 1 < d < n.
- ullet Soit p un nombre premier, soit n un entier relatif. Si p ne divise pas n, alors p et n sont premiers entre eux.

Exemple 13. • 2, 3, 5, 7, 11, 13, 17, 19... sont des nombres premiers.

 \bullet 1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20... ne sont pas des nombres premiers.

Proposition 5

Soit n un entier naturel supérieur ou égal à 2.

Alors n admet au moins un diviseur premier.

Démonstration. Soit $d = \min\{k \ge 2, k \text{ divise } n\}$. L'entier d existe bien car l'ensemble $\{k \ge 2, k \text{ divise } n\}$ est une partie de \mathbb{N} non vide (puisqu'il contient n).

Montrons que d est premier.

Supposons par l'absurde que d n'est pas premier. Alors il existe un entier d' tel que d' divise d et 1 < d' < d.

Or, puisque d divise n, si d' divise d, alors d' divise n.

Ainsi, d' est un entier supérieur ou égal à 2 qui divise et qui vérifie d' < d, ce qui contredit la minimalité de d dans l'ensemble $\{k \ge 2, k \text{ divise } n\}$.

Il est donc nécessaire que d soit premier, ce qui prouve que d est un diviseur premier de n.

Remarque 11. Dans la preuve précécente, si n est premier, alors d = n.

Exemple 14. Les diviseurs supérieurs ou égaux à 2 de 63 sont $\{3, 7, 9, 21, 63\}$. On constate que le minimum de cet ensemble, qui est 3, est bien un nombre premier.

Proposition 6: Corollaire du lemme de Gauss

Soit p un nombre premier. Soient $(a, b) \in \mathbb{Z}^2$ tels que p divise ab. Alors p divise a ou p divise b.

Démonstration. • Si p divise a, c'est terminé.

ullet Si p ne divise pas a, alors p est premier avec a. Puisque p divise ab, le lemme de Gauss implique alors que p divise b.

On en conclut donc que p divise a ou p divise b.

Remarque 12. • Ceci signifie que si un nombre premier divise un produit d'entiers, il divise nécessairement un des termes du produit.

 \bullet On a déjà vu que cette propriété n'est plus forcément vraie si p n'est pas premier : en effet, 6 divise 3×4 mais ne divise ni 3 ni 4.

Proposition 7: Infinité de l'ensemble des nombres premiers

L'ensemble des nombres premiers est infini.

Démonstration. Soit \mathcal{P} l'ensemble des nombres premiers.

Supposons par l'absurde que \mathcal{P} est fini.

Soit
$$N = \left(\prod_{p \in \mathcal{P}} p\right) + 1.$$

Puisque $N \geqslant 2$, \hat{N} admet un diviseur premier $p_0 \in \mathcal{P}$.

De plus, puisque $p_0 \in \mathcal{P}, p_0$ divise $\prod_{p \in \mathcal{P}} p$. Ainsi, p_0 divise N et $\prod_{p \in \mathcal{P}} p$ donc p_0 divise $N - \prod_{p \in \mathcal{P}} p = 1$, ce qui est absurde pour un nombre premier!

On en conclut que \mathcal{P} est infini.

10.2.2 Décomposition en produit de nombres premiers

Théorème 3: Existence et unicité de la décomposition en produit de nombres premiers

Soit n un entier naturel supérieur ou égal à 2.

Il existe un entier $r \in \mathbb{N}^*$, des nombres premiers p_1, \ldots, p_r distincts deux à deux et des entiers naturels non nuls $\alpha_1, \ldots, \alpha_r$ tels que

$$n = \prod_{k=1}^{r} p_k^{\alpha_k}.$$

De plus, cette décomposition est unique à l'ordre près des facteurs.

Démonstration.

⊳Existence

Montrons l'existence de cette décomposition par récurrence forte sur $n \ge 2$.

- •Initialisation: Soit n=2. En prenant $p_1=2$ et $\alpha_1=1$, on a bien $n=2=p_1^{\alpha_1}$.
- •**Hérédité**: Soit $n \ge 2$ fixé. On suppose prouvée l'existence d'une telle décomposition pour tous les entiers $k \in [2, n]$. Montrons que n+1 admet également une telle décomposition.

Si n+1 est premier, en prenant $p_1=n+1$ et $\alpha_1=1$, on a bien $n+1=p_1^{\alpha_1}$.

Supposons dorénavant que n+1 n'est pas premier. Alors n+1 admet un diviseur premier $p \in [2, n]$. Ainsi $\frac{n+1}{p} \in [2, n]$.

Par hypothèse de récurrence forte, on sait qu'il existe un entier $r \in \mathbb{N}^*$, des nombres premiers p_1, \ldots, p_r distincts deux à deux et des entiers naturels non nuls $\alpha_1, \ldots, \alpha_r$ tels que

$$\frac{n+1}{p} = \prod_{k=1}^{r} p_k^{\alpha_k},$$

d'où
$$n+1=p\prod_{k=1}^r p_k^{\alpha_k}$$
.

Si
$$p \notin \{p_1, \dots, p_r\}$$
, on pose $p_{r+1} = p$, $\alpha_{r+1} = 1$ et on a $n+1 = \prod_{k=1}^{r+1} p_k^{\alpha_k}$.
S'il existe $i \in [\![1,r]\!]$ tel que $p = p_i$, on pose $\alpha_i' = \alpha_i + 1$, pour tout $k \in [\![1,r]\!] \setminus \{i\}, \alpha_k' = \alpha_k$

et on obtient $n+1 = \prod' p_k^{\alpha'_k}$.

Dans tous les cas, on a prouvé la propriété au rang n+1, ce qui achève la récurrence et prouve l'existence d'une telle décomposition pour tous les entiers supérieurs ou égaux à 2.

⊳Unicité

Soit $n \ge 2$. Supposons que n admette deux décompositions

$$n = \prod_{k=1}^r p_k^{\alpha_k} = \prod_{i=1}^{r'} p_i'^{\alpha_i'}$$

où $(r,r') \in (\mathbb{N}^*)^2, p_1, \ldots, p_r$ sont des nombres premiers deux à deux distincts, idem pour $p'_1, \ldots, p'_{r'}$, et où $\alpha_1, \ldots, \alpha_r, \alpha'_1, \ldots, \alpha'_{r'}$ sont des entiers naturels non nuls. Soit $k \in [1,r]$.

Alors p_k divise $\prod_{i=1}^{r'} p_i'^{\alpha_i'}$. D'après le corollaire du lemme de Gauss, il existe nécessairement un indice $i \in [1, r']$ tel que p_k divise $p_i'^{\alpha_i'}$, ce qui implique que $p_k = p_i'$. Ainsi, tous les nombres premiers p_1, \ldots, p_r apparaissent dans la décomposition $\prod_{i=1}^{r'} p_i'^{\alpha_i'}$.

Réciproquement, le même raisonnement montre que tous les nombres premiers $p'_1,\dots,p'_{r'}$ apparaissent dans la décomposition $\prod^r p_k^{\alpha_k}$.

On en déduit que r=r' et quitte à renuméroter les p_k et les p_i' , on peut supposer que pour tout $k \in [\![1,r]\!], p_k=p_k'$.

A ce stade, on a donc les deux décompositions suivantes :

$$n = \prod_{k=1}^{r} p_k^{\alpha_k} = \prod_{k=1}^{r} p_k^{\alpha'_k}.$$

Il reste à montrer que pour tout $k \in [1, r], \alpha_k = \alpha'_k$.

Soit $k \in [1, r]$. On sait que $p_k^{\alpha_k}$ divise $\prod_{i=1}^r p_i^{\alpha_i'}$. En appliquant de nouveau le lemme de Gauss,

puisque $p_k^{\alpha_k}$ est premier avec $\prod_{\substack{i=1\\i\neq k}}^r p_i^{\alpha_i'}$, on en déduit que $p_k^{\alpha_k}$ divise $p_k^{\alpha_k'}$, ce qui implique que $\alpha_k \leqslant \alpha_k'$.

En faisant le même raisonnement à partir de $p_k^{\alpha_k'}$, on en déduit que $\alpha_k' \leqslant \alpha_k$ et donc finalement que $\alpha_k = \alpha_k'$.

On a donc bien montré que la décomposition est unique, à l'ordre près des facteurs.

Exemple 15. La décomposition en facteurs premiers de 756 est $756 = 2^2 \times 3^3 \times 7$.

Définition 6: Valuation p-adique

Soit n un entier supérieur ou égal à 2. Soit p un nombre premier. On appelle valuation p-adique de n, notée $v_p(n)$, l'entier naturel

$$v_p(n) = \max\{k \in \mathbb{N}, p^k \text{ divise } n\}.$$

Autrement dit, $v_p(n)$ est la puissance de p qui apparaît dans la décomposition en facteurs premiers de n.

Remarque 13. • Si p ne divise pas n, alors $v_p(n) = 0$.

• Soient p_1, \ldots, p_r les nombres premiers deux à deux distincts qui divisent n.

Alors
$$n = \prod_{i=1}^{r} p_i^{v_{p_i}(n)}$$
.

Exemple 16. $v_2(756) = 2, v_3(3) = 3, v_5(756) = 0, v_7(756) = 1.$

Proposition 8: Nombre de diviseurs positifs

Soit n un entier supérieur ou égal à 2. Soit $r \in \mathbb{N}^*$, et p_1, \ldots, p_r des nombres premiers deux à deux distincts tels que

$$n = \prod_{i=1}^{r} p_i^{v_{p_i}(n)}.$$

L'ensemble des diviseurs de n est alors

$$\left\{ \prod_{i=1}^r p_i^{\alpha_i}, \forall 1 \leqslant i \leqslant r, \alpha_i \in [0, v_{p_i}(n)] \right\}.$$

En particulier, n admet $\prod_{i=1}^{r} (v_{p_i}(n) + 1)$ diviseurs positifs.

Démonstration. Soit d un diviseur de n supérieur ou égal à 2. Soit p un diviseur premier de d. Alors p est un diviseur premier de n donc p appartient à l'ensemble $\{p_1, \ldots, p_r\}$.

Ainsi, l'ensemble des facteurs premiers de d est inclus dans $\{p_1, \ldots, p_r\}$ donc $d = \prod_{i=1}^r p_i^{v_{p_i}(d)}$, avec éventuellement $v_{p_i}(d) = 0$ si p_i ne divise pas d.

Par ailleurs, puisque d divise n, on a forcément pour tout $i \in [1, r], v_{p_i}(d) \leq v_{p_i}(n)$. Réciproquement, tout nombre de la forme indiquée est bien un diviseur de n.

Remarque 14. Si pour tout $i \in [1, r]$, $\alpha_i = 0$, on retrouve 1 comme diviseur positif de n.

Exemple 17. $60 = 2^2 \times 3 \times 5$. 60 admet donc $(2+1) \times (1+1) \times (1+1) = 12$ diviseurs positifs que sont $\{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\}$

Proposition 9: Décomposition en facteurs premiers du PGCD et du PPCM de deux entiers naturels

Soient a et b deux entiers naturels supérieurs ou égaux à deux.

Soit $\{p_1, \ldots, p_r\}$, avec $r \in \mathbb{N}^*$, l'ensemble des nombres premiers qui divisent a ou b (mais pas nécessairement les deux).

Notons $a = \prod_{i=1}^r p_i^{v_{p_i}(a)}$ et $b = \prod_{i=1}^r p_i^{v_{p_i}(b)}$, avec ici éventuellement $v_{p_i}(a) = 0$ ou $v_{p_i}(b) = 0$.

Alors

$$PGCD(a,b) = \prod_{i=1}^{r} p_i^{\min(v_{p_i}(a), v_{p_i}(b))} \quad \text{et} \quad PPCM(a,b) = \prod_{i=1}^{r} p_i^{\max(v_{p_i}(a), v_{p_i}(b))}.$$

Démonstration. • Puisque pour tout $i \in [1, r]$, $\min(v_{p_i}(a), v_{p_i}(b)) \leq v_{p_i}(a)$ et $\min(v_{p_i}(a), v_{p_i}(b)) \leq v_{p_i}(b)$, il est clair que $\prod_{i=1}^r p_i^{\min(v_{p_i}(a), v_{p_i}(b))}$ divise a et b, donc divise $\operatorname{PGCD}(a, b)$.

Réciproquement, soit d un diviseur positif commun à a et à b. D'après la proposition précédente, on a nécessairement $d = \prod_{i=1}^r p_i^{v_{p_i}(d)}$, où pour tout $i \in [\![1,n]\!], v_{p_i}(d) \leqslant v_{p_i}(a)$ et

 $v_{p_i}(d) \leqslant v_{p_i}(b)$ donc $v_{p_i}(d) \leqslant \min(v_{p_i}(a), v_{p_i}(b))$. Il en découle que d divise $\prod_{i=1}^r p_i^{\min(v_{p_i}(a), v_{p_i}(b))}$.

Ainsi, $\prod_{i=1}^{r} p_i^{\min(v_{p_i}(a), v_{p_i}(b))}$ est un diviseur commun à a et à b et est divisible par tous les

diviseurs communs à a et à b: c'est donc le PGCD de a et b.

• Puisque pour tout $i \in [1, r]$, $\max(v_{p_i}(a), v_{p_i}(b)) \ge v_{p_i}(a)$ et $\max(v_{p_i}(a), v_{p_i}(b)) \ge v_{p_i}(b)$, il est clair que $\prod_{i=1}^r p_i^{\max(v_{p_i}(a), v_{p_i}(b))}$ est un multiple commun à a et b, donc est un multiple de $\operatorname{PPCM}(a, b)$.

Réciproquement, soit m un multiple positif commun à a et à b. D'après la proposition précédente, on a nécessairement $m = \prod_{i=1}^r p_i^{v_{p_i}(d)}$, où pour tout $i \in [\![1,n]\!], v_{p_i}(d) \geqslant v_{p_i}(a)$ et $v_{p_i}(d) \geqslant v_{p_i}(b)$ donc $v_{p_i}(d) \geqslant \max(v_{p_i}(a), v_{p_i}(b))$. Il en découle que m est un multiple de $\prod_{i=1}^r p_i^{\max(v_{p_i}(a), v_{p_i}(b))}$.

Ainsi, $\prod_{i=1}^r p_i^{\max(v_{p_i}(a), v_{p_i}(b))}$ est un multiple commun à a et à b et divise tous les diviseurs communs à a et à b: c'est donc le PPCM de a et b.

Remarque 15. On retrouve bien $PGCD(a, b) \times PPCM(a, b) = ab$.

Exemple 18. On a $60 = 2^2 \times 3 \times 5$ et $126 = 2 \times 3^2 \times 7$. Ainsi, $PGCD(60, 126) = 2 \times 3 = 6$ et $PPCM(60, 126) = 2^2 \times 3^2 \times 5 \times 7 = 1260$.

Année 2025-2026 13 / 13 Alex Panetta