11

Suites numériques

11.1 Généralités

11.1.1 Définition et premières propriétés

Définition 1

On appelle suite réelle toute application définie sur une partie de \mathbb{N} de la forme $\mathbb{N} \cap [n_0, +\infty[$ où $n_0 \in \mathbb{N}$ et à valeurs dans \mathbb{R} . Autrement dit, à tout entier naturel $n \geq n_0$, on associe un réel u(n) qu'on note u_n .

On note $(u_n)_{n\geq n_0}$ une telle suite.

Le nombre réel u_n s'appelle le terme général de la suite $(u_n)_{n\in\mathbb{N}}$.

Remarque 1. L'ensemble des suites réelles se note $\mathbb{R}^{\mathbb{N}}$, car c'est l'ensemble des applications définies sur \mathbb{N} à valeurs dans \mathbb{R} .

Exemple 1. • Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie pour tout $n\in\mathbb{N}$ par $u_n=n$.

On a $u_0 = 0$, $u_1 = 1$, $u_2 = 2$...

• Soit $(v_n)_{n\in\mathbb{N}}$ la suite définie pour tout $n\in\mathbb{N}$ par $v_n=n+1$.

On a $v_0 = 1, v_1 = 2, v_2 = 3...$

• Soit $(w_n)_{n\in\mathbb{N}}$ la suite définie pour tout $n\in\mathbb{N}$ par $w_n=2n$.

On a $w_0 = 0, w_1 = 2, w_2 = 4...$

• Soit $(t_n)_{n\in\mathbb{N}}$ la suite définie par $t_0=16$ et pour tout $n\in\mathbb{N}, t_{n+1}=\sqrt{t_n}$.

On a $t_1 = 4$, $t_2 = 2$, $t_3 = \sqrt{2}$...

• Soit $(F_n)_{n\in\mathbb{N}}$ la suite de Fibonacci définie par $F_0=0, F_1=1$ et pour tout $n\in\mathbb{N}, F_{n+2}=F_{n+1}+F_n$.

On a $F_2 = 1, F_3 = 2, F_4 = 3, F_5 = 5, F_6 = 8, F_7 = 13, F_8 = 21...$

Définition 2

Soit $n_0 \in \mathbb{N}$. Soient $(u_n)_{n \geq n_0}$ et $(v_n)_{n \geq n_0}$ deux suites réelles.

- 1. Pour tout $\lambda \in \mathbb{R}$, on définit la suite $(\lambda u_n)_{n \geq n_0}$ de terme général $\lambda \times u_n$.
- 2. On appelle somme des suites $(u_n)_{n\geq n_0}$ et $(v_n)_{n\in\mathbb{N}}$ la suite $(u_n+v_n)_{n\geq n_0}$ de terme général u_n+v_n .
- 3. On appelle produit des suites $(u_n)_{n\geq n_0}$ et $(v_n)_{n\in\mathbb{N}}$ la suite $(u_nv_n)_{n\geq n_0}$ de terme général u_nv_n .
- 4. On suppose que pour tout $n \ge n_0, v_n \ne 0$. On appelle quotient des suites $(u_n)_{n \ge n_0}$ et $(v_n)_{n \in \mathbb{N}}$ la suite $\left(\frac{u_n}{v_n}\right)_{n \ge n_0}$ de terme général $\frac{u_n}{v_n}$.

Définition 3: Suites majorées, minorées, bornées

Soit $n_0 \in \mathbb{N}$. Soit $(u_n)_{n \geq n_0}$ une suite réelle.

- 1. On dit que la suite $(u_n)_{n\geq n_0}$ est majorée s'il existe un réel M tel que pour tout $n\geq n_0, u_n\leq M$.
- 2. On dit que la suite $(u_n)_{n\geq n_0}$ est minorée s'il existe un réel m tel que pour tout $n\geq n_0, u_n\geq m$.
- 3. On dit que la suite $(u_n)_{n\geq n_0}$ est bornée si elle est à la fois majorée et minorée.

Exemple 2. • La suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par $u_n=n$ est minorée par 0 mais n'est pas majorée.

- La suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par $u_n=-n$ est majorée par 0 mais n'est pas minorée.
- La suite $(u_n)_{n\in\mathbb{N}^*}$ définie pour tout $n\in\mathbb{N}^*$ par $u_n=\frac{(-1)^n}{n}$ est bornée puisque majorée par 1 et minorée par -1.
 - La suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par $u_n=(-1)^n n$ n'est ni majorée ni minorée.

Remarque 2. Il est équivalent de dire que la suite $(u_n)_{n\geq n_0}$ est majorée (resp. minorée, bornée) et que l'ensemble $\{u_n, n\geq n_0\}$ est majoré (resp. minoré, borné).

Proposition 1

Soit $n_0 \in \mathbb{N}$. Soit $(u_n)_{n \geq n_0}$ une suite réelle.

La suite $(u_n)_{n\geq n_0}$ est bornée si et seulement si il existe un réel positif r tel que pour tout $n\geq n_0, |u_n|\leq r$.

Démonstration. La suite $(u_n)_{n\geq n_0}$ est bornée si et seulement si l'ensemble $\{u_n, n\geq n_0\}$ est borné.

D'après un résultat du chapitre « Nombres réels », ceci équivaut au fait qu'il existe $r \ge 0$ tel que pour tout $n \ge n_0, |u_n| \le r$.

Définition 4: Suites monotones

Soit $n_0 \in \mathbb{N}$. Soit $(u_n)_{n > n_0}$ une suite réelle.

1. On dit que la suite $(u_n)_{n\geq n_0}$ est croissante (resp. strictement croissante) si pour tout $n\geq n_0, u_{n+1}\geq u_n$ (resp. $u_{n+1}>u_n$).

- 2. On dit que la suite $(u_n)_{n\geq n_0}$ est décroissante (resp. strictement décroissante) si pour tout $n\geq n_0, u_{n+1}\leq u_n$ (resp. $u_{n+1}< u_n$).
- 3. On dit que la suite $(u_n)_{n\geq n_0}$ est monotone si elle est croissante ou décroissante.
- 4. On dit que la suite $(u_n)_{n\geq n_0}$ est constante si pour tout $n\geq n_0, u_{n+1}=u_n$.
- 5. On dit que la suite $(u_n)_{n\geq n_0}$ est stationnaire si elle est constante à partir d'un certain rang $n_1\geq n_0$.

Remarque 3. • On montre par une récurrence immédiate que si la suite $(u_n)_{n\geq n_0}$ est croissante (resp. décroissante, resp. constante), alors pour tout $n\geq n_0, u_n\geq u_{n_0}$ (resp. $u_n\leq u_{n_0}$, resp. $u_n=u_{n_0}$).

• Il est possible que ces propriétés ne soient vérifiées qu'à partir d'un certain rang $n_1 > n_0$ et on dit alors que la suite $(u_n)_{n \ge n_0}$ est croissante (ou décroissante, ou constante) à partir du rang n_1 .

Proposition 2

Soit $n_0 \in \mathbb{N}$. Soit $(u_n)_{n > n_0}$ une suite réelle.

- 1. La suite $(u_n)_{n\geq n_0}$ est croissante (resp. strictement croissante) si et seulement si pour tout $n\geq n_0, u_{n+1}-u_n\geq 0$ (resp. $u_{n+1}-u_n>0$).
- 2. La suite $(u_n)_{n\geq n_0}$ est décroissante (resp. strictement décroissante) si et seulement si pour tout $n\geq n_0, u_{n+1}-u_n\leq 0$ (resp. $u_{n+1}-u_n<0$).
- 3. La suite $(u_n)_{n\geq n_0}$ est constante si et seulement si pour tout $n\geq n_0, u_{n+1}-u_n=0$.

Démonstration. Immédiate d'après la définition.

Exemple 3. • La suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par $u_n=3n-2$ est strictement croissante car pour tout $n\in\mathbb{N}$, on a

$$u_{n+1} - u_n = 3(n+1) - 2 - (3n-2) = 3n+1 - 3n + 2 = 3 > 0.$$

• La suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par $u_n=-2n+1$ est strictement décroissante car pour tout $n\in\mathbb{N}$, on a

$$u_{n+1} - u_n = -2(n+1) + 1 - (-2n+1) = -2n - 1 + 2n - 1 = -2 < 0.$$

• La suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par $u_n=\pi$ est constante.

11.1.2 Convergence

Dorénavant, on notera toujours une suite sous la forme $(u_n)_{n\in\mathbb{N}}$. Si une suite $(u_n)_{n\geq n_0}$ n'est définie qu'à partir de l'entier n_0 , il suffit de poser une nouvelle suite $(v_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par $v_n=u_{n+n_0}$.

Année 2025-2026 3 / 33 Alex Panetta

Définition 5

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

1. Soit $l \in \mathbb{R}$.

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ converge (ou tend) vers l si

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, |u_n - l| \le \varepsilon.$$

On écrit alors $\lim_{n\to+\infty} u_n = l$ (ou $u_n \xrightarrow[n\to+\infty]{} l$) et l est appelé la limite la suite $(u_n)_{n\in\mathbb{N}}$.

Dans le cas où l=0, deux cas particuliers sont importants :

(a) On dit que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers 0^+ si pour tout $\varepsilon>0$, il existe $n_0\in\mathbb{N}$ tel que pour tout $n\geq n_0, 0< u_n\leq \varepsilon$.

On note alors $\lim_{n\to+\infty} u_n = 0^+$ (ou $u_n \xrightarrow[n\to+\infty]{} 0^+$).

(b) On dit que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers 0^- si pour tout $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0, -\varepsilon \leq u_n < 0$.

On note alors
$$\lim_{n \to +\infty} u_n = 0^-$$
 (ou $u_n \xrightarrow[n \to +\infty]{} 0^-$).

Une suite qui converge est dite convergente; une suite qui ne converge pas est dite divergente.

2. On dit que la suite $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ et on note $\lim_{n\to+\infty} u_n = +\infty$ (ou $u_n \underset{n\to+\infty}{\longrightarrow} +\infty$) si

$$\forall A > 0, \exists n_0 \in \mathbb{N}, \forall n \geq n_0, u_n \geq A.$$

3. On dit que la suite $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$ et on note $\lim_{n\to+\infty} u_n = -\infty$ (ou $u_n \xrightarrow[n\to+\infty]{}$ $-\infty$) si

$$\forall A < 0, \exists n_0 \in \mathbb{N}, \forall n \geq n_0, u_n \leq A.$$

Remarque 4. • En particulier, une suite qui tend vers $+\infty$ ou $-\infty$ n'est pas bornée.

- La convergence d'une suite ne dépend pas de ses premiers termes. En effet, il suffit qu'une certaine inégalité ait lieu à partir d'un certain rang pour établir qu'une suite est convergente.
- Supposons que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers l. Soit $\varepsilon > 0$. Par définition, on sait qu'à partir d'un certain rang, tous les termes de la suite seront dans l'intervalle $[l \varepsilon, l + \varepsilon]$.
- Pour montrer la convergence d'une suite vers sa limite l, il suffit de prouver que pour tout $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0, |u_n l| \leq \alpha \varepsilon$ où α est un réel strictement positif qui ne dépend pas de ε . En effet, si ε parcourt \mathbb{R}^*_+ , $\alpha \varepsilon$ fait de même.
 - Par définition, on a l'équivalence

$$\lim_{n \to +\infty} u_n = l \Leftrightarrow \lim_{n \to +\infty} |u_n - l| = 0.$$

• Si $\lim_{n \to +\infty} u_n = 0$, on n'a pas forcément $\lim_{n \to +\infty} u_n = 0^+$ ou $\lim_{n \to +\infty} u_n = 0^-$.

En effet, soit $u_n = \frac{(-1)^n}{n}$ pour tout $n \in \mathbb{N}^*$. On a $\lim_{n \to +\infty} u_n = 0$ mais pour tout $n \in \mathbb{N}^*$, $u_{2n} > 0$ et $u_{2n+1} < 0$. On ne peut donc pas avoir $\lim_{n \to +\infty} u_n = 0^+$ ni $\lim_{n \to +\infty} u_n = 0^-$.

Proposition 3: Unicité de la limite

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Soient l et l' deux réels. Si $(u_n)_{n\in\mathbb{N}}$ converge vers l et vers l', alors l=l'.

Démonstration. Soit $\varepsilon > 0$.

Par définition, puisque $(u_n)_{n\in\mathbb{N}}$ converge vers l, il existe $n_0\in\mathbb{N}$ tel que pour tout $n\geq n_0$, on a

$$|u_n - l| \le \frac{\varepsilon}{2}.$$

De même, puisque $(u_n)_{n\in\mathbb{N}}$ converge vers l', il existe $n_1\in\mathbb{N}$ tel que pour tout $n\geq n_1$, on a

$$|u_n - l'| \le \frac{\varepsilon}{2}.$$

Soit $N = \max\{n_0, n_1\}$. Alors on a

$$|l - l'| = |l - u_N + u_N - l'|$$

$$\leq |l - u_N| + |u_N - l'|$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$< \varepsilon.$$

Ainsi, pour tout $\varepsilon > 0$, $|l - l'| \le \varepsilon$, d'où |l - l'| = 0, i.e. l = l'.

Exemple 4. • La suite $(u_n)_{n\in\mathbb{N}^*}$ définie pour tout $n\in\mathbb{N}^*$ par $u_n=\frac{1}{n}$ tend vers 0. En effet, soit $\varepsilon>0$. On a

$$\left| \frac{1}{n} - 0 \right| \le \varepsilon \Leftrightarrow \frac{1}{n} \le \varepsilon \Leftrightarrow n \ge \frac{1}{\varepsilon}.$$

Posons $n_0 = \left| \frac{1}{\varepsilon} \right| + 1$. Alors pour tout $n \ge n_0$, on a $n \ge \frac{1}{\varepsilon}$ d'où $|u_n - 0| \le \varepsilon$.

Ainsi, on a bien montré que pour tout $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0, |u_n - l| \le \varepsilon$, ce qui prouve que $\lim_{n \to +\infty} \frac{1}{n} = 0$.

• La suite $(v_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par $v_n=\sqrt{n}$ tend vers $+\infty$.

En effet, soit A > 0. On a $v_n \ge A \Leftrightarrow \sqrt{n} \ge A \Leftrightarrow n \ge A^2$.

On pose $n_0 = \lfloor A^2 \rfloor + 1$. Alors pour tout $n \ge n_0$, on a $n \ge A^2$ d'où $v_n \ge A$. Ainsi, on a bien montré que pour tout A > 0, il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0, v_n \ge A$, ce qui prouve que $\lim_{n \to +\infty} v_n = +\infty$.

• Toute suite constante est convergente. En effet, soit $a \in \mathbb{R}$. Soit $(u_n)_{n \in \mathbb{N}}$ la suite constante égale à a.

Alors pour tout $n \in \mathbb{N}$, $|u_n - a| = 0 \le \varepsilon$ pour tout $\varepsilon > 0$.

• Une suite à valeurs entières est convergente si et seulement si elle est stationnaire.

En effet, soit $(u_n)_{n\in\mathbb{N}}$ à valeurs dans \mathbb{Z} . Supposons que $(u_n)_{n\in\mathbb{N}}$ converge vers l. Par définiton, il existe un rang n_0 à partir duquel $u_n \in [l-\frac{1}{2},l+\frac{1}{2}]$. Or, le seul entier dans $[l-\frac{1}{2},l+\frac{1}{2}]$ est l donc pour tout $n \ge n_0, u_n = l$.

La réciproque découle du point précédent.

Proposition 4

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle convergeant vers une limite $l\in\mathbb{R}$. Alors la suite $(u_n)_{n\in\mathbb{N}}$ est bornée.

Démonstration.

Soit $\varepsilon > 0$.

Par définition, puisque $(u_n)_{n\in\mathbb{N}}$ converge vers l, il existe $n_0\in\mathbb{N}$ tel que pour tout $n\geq n_0$, on a

$$|u_n - l| \le \varepsilon$$
.

Ainsi, pour tout $n \geq n_0$, on a

$$|u_n| \le |u_n - l| + |l| \le \varepsilon + |l|.$$

Soit $r = \max\{|u_0|, |u_1|, \cdots, |u_{n_0-1}|, \varepsilon + |l|\}$. Alors on a pour tout $n \in \mathbb{N}, |u_n| \le r$, donc la suite $(u_n)_{n \in \mathbb{N}}$ est bornée.

Remarque 5. La réciproque est fausse, comme nous le verrons plus tard avec la suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par $u_n=(-1)^n$.

Proposition 5

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles convergeant vers $l\in\mathbb{R}$ et $l'\in\mathbb{R}$ respectivement.

- 1. Pour tout $(\lambda, \mu) \in \mathbb{R}^2$, la suite $(\lambda u_n + \mu v_n)_{n \in \mathbb{N}}$ converge vers $\lambda l + \mu l'$.
- 2. La suite $(u_n v_n)_{n \in \mathbb{N}}$ converge vers ll'.
- 3. Si la suite $(v_n)_{n\in\mathbb{N}}$ est non nulle à partir d'un certain rang n_0 et si $l'\neq 0$, alors la suite $\left(\frac{1}{v_n}\right)_{n>n_0}$ converge vers $\frac{1}{l'}$ et $\left(\frac{u_n}{v_n}\right)_{n>n_0}$ converge vers $\frac{l}{l'}$.
- 4. La suite $(|u_n|)_{n\in\mathbb{N}}$ converge vers |l| (la réciproque est fausse).

Démonstration.

1. Soit $(\lambda, \mu) \in \mathbb{R}^2$.

Soit $\varepsilon > 0$.

Par définition, puisque $(u_n)_{n\in\mathbb{N}}$ converge vers l, il existe $n_0\in\mathbb{N}$ tel que pour tout $n\geq n_0$, on a

$$|u_n - l| \le \varepsilon$$
.

De même, puisque $(v_n)_{n\in\mathbb{N}}$ converge vers l', il existe $n_1\in\mathbb{N}$ tel que pour tout $n\geq n_1$, on a

$$|v_n - l'| \le \varepsilon$$
.

Soit $N = \max\{n_0, n_1\}$. Alors, pour tout $n \geq N$, on a

$$|\lambda u_n + \mu v_n - (\lambda l + \mu l')| \leq |\lambda (u_n - l)| + |\mu (v_n - l')|$$

$$\leq |\lambda| |u_n - l| + |\mu| |v_n - l'|$$

$$\leq (|\lambda| + |\mu|) \varepsilon,$$

donc $\lim_{n \to +\infty} \lambda u_n + \mu v_n = \lambda l + \mu l'$.

2. Soit $\varepsilon > 0$. Par définition, puisque $(u_n)_{n \in \mathbb{N}}$ converge vers l, il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0$, on a

$$|u_n - l| \le \varepsilon$$
.

De même, puisque $(v_n)_{n\in\mathbb{N}}$ converge vers l', il existe $n_1\in\mathbb{N}$ tel que pour tout $n\geq n_1$, on a

$$|v_n - l'| \le \varepsilon$$
.

Enfin, puisque la suite $(u_n)_{n\in\mathbb{N}}$ est convergente, alors elle est bornée. Il existe donc un réel positif r tel que pour tout $n\in\mathbb{N}, |u_n|\leq r$.

Soit $N = \max(n_0, n_1)$. On a alors pour tout $n \ge N$,

$$|u_n v_n - ll'| = |u_n (v_n - l') + l' (u_n - l)|$$

 $\leq |u_n| |v_n - l'| + |l'| |u_n - l|$
 $\leq (r + |l'|) \varepsilon,$

ce qui prouve que $\lim_{n\to+\infty} u_n v_n = ll'$.

3. Supposons qu'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0, v_n \neq 0$. Supposons également que $l' \neq 0$.

Montrons que la suite $\left(\frac{1}{v_n}\right)_{n\geq n_0}$ converge vers $\frac{1}{l'}$.

Puisque $\lim_{n\to+\infty} v_n = l'$, il existe $n_1 \in \mathbb{N}$ tel que pour tout $n \geq n_1$,

$$|v_n - l'| \le \frac{|l'|}{2} \ne 0.$$

En particulier, pour tout $n \geq n_1$,

$$|v_n| = |v_n - l' + l'| \ge ||v_n - l'| - |l'|| = |l'| - |v_n - l'| \ge |l'| - \frac{|l'|}{2} = \frac{|l'|}{2},$$

d'où pour tout $n \ge n_1, \frac{1}{|v_n|} \le \frac{2}{|l'|}$.

Soit $\varepsilon > 0$.

Puisque $\lim_{n\to+\infty}v_n=l'$, il existe $n_2\in\mathbb{N}$ tel que pour tout $n\geq n_2, |v_n-l'|\leq\varepsilon$.

Soit $N = \max(n_0, n_1, n_2)$. Alors pour tout $n \ge N$, on a

$$\left| \frac{1}{v_n} - \frac{1}{l'} \right| = \left| \frac{l' - v_n}{l' v_n} \right|$$

$$\leq \frac{\varepsilon}{|l'|} \frac{2}{|l'|}$$

$$= \frac{2\varepsilon}{|l'|^2}$$

ce qui assure que $\lim_{n\to+\infty}\frac{1}{v_n}=\frac{1}{l'}$.

D'après l'alinéa précédent, on en déduit que

$$\lim_{n \to +\infty} \frac{u_n}{v_n} = \lim_{n \to +\infty} u_n \times \lim_{n \to +\infty} \frac{1}{v_n} = \frac{l}{l'}.$$

4. Soit $\varepsilon > 0$.

Par définition, puisque $(u_n)_{n\in\mathbb{N}}$ converge vers l, il existe $n_0\in\mathbb{N}$ tel que pour tout $n\geq n_0$, on a

$$|u_n - l| \le \varepsilon$$
.

Ainsi, pour tout $n \geq n_0$, on a

$$||u_n| - |l|| \le |u_n - l| \le \varepsilon,$$

donc $\lim_{n \to +\infty} |u_n| = |l|$.

Remarque 6. • La réciproque du deuxième alinéa est faux comme le montre l'exemple de la suite définie par $u_n = (-1)^n$. En effet, cette suite n'admet pas de limite puisque pour tout $n \in \mathbb{N}$, on a $u_{2n} = 1$ et $u_{2n+1} = -1$.

En revanche, la suite $(|u_n|)_{n\in\mathbb{N}}$ est la suite constante égale à 1, donc elle converge vers 1.

- Si une suite $(u_n)_{n\in\mathbb{N}}$ converge vers $l\in\mathbb{R}$, alors la suite $(-u_n)_{n\in\mathbb{N}}$ converge vers $-l\in\mathbb{R}$.
- Dans le cas particulier où on prend la suite $(v_n)_{n\in\mathbb{N}}$ constante égale à $a\in\mathbb{R}$, on trouve que si $\lim_{n\to+\infty}u_n=l\in\mathbb{R}$, alors $\lim_{n\to+\infty}u_n+v_n=l+a$ et $\lim_{n\to+\infty}u_nv_n=l\times a$.

Année 2025-2026 7 / 33 Alex Panetta

Proposition 6

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que $\lim_{n\to+\infty}u_n=+\infty$.

1. Pour tout $\lambda \in \mathbb{R}_+^*$, $\lim_{n \to +\infty} \lambda u_n = +\infty$ et pour tout $\lambda \in \mathbb{R}_-^*$, $\lim_{n \to +\infty} \lambda u_n = -\infty$.

- 2. On a $\lim_{n\to+\infty} \frac{1}{u_n} = 0^+$.
- 3. Si $(v_n)_{n\in\mathbb{N}}$ est une suite minorée (en particulier si $(v_n)_{n\in\mathbb{N}}$ est une suite convergente ou si $(v_n)_{n\in\mathbb{N}}$ tend vers $+\infty$), alors $\lim_{n\to+\infty} u_n + v_n = +\infty$.
- 4. Soit $(v_n)_{n\in\mathbb{N}}$ une suite convergente de limite $l\in\mathbb{R}$.
 - Si l > 0, alors $\lim_{n \to +\infty} u_n v_n = +\infty$.
 - Si l < 0, alors $\lim_{n \to +\infty} u_n v_n = -\infty$.
- 5. Si $(v_n)_{n\in\mathbb{N}}$ est une suite telle que $\lim_{n\to+\infty}v_n=+\infty$ (resp. $-\infty$), alors $\lim_{n\to+\infty}u_nv_n=+\infty$ (resp. $-\infty$).

Remarque 7. En effet, si une suite $(v_n)_{n\in\mathbb{N}}$ tend vers $+\infty$, elle est minorée car par définition, il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0, v_n \geq 1$ donc pour tout $n \in \mathbb{N}$,

$$v_n \ge \min\{v_0, v_1, \dots, v_{n_0-1}, 1\}.$$

Démonstration.

1. • Soit $\lambda \in \mathbb{R}_+^*$.

Soit A > 0. Puisque $(u_n)_{n \in \mathbb{N}}$ tend vers $+\infty$, il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0, u_n \ge \frac{A}{\lambda}$.

Ainsi, pour tout $n \ge n_0$, $\lambda u_n \ge A$, ce qui implique que $\lim_{n \to +\infty} \lambda u_n = +\infty$.

• Soit $\lambda \in \mathbb{R}_{-}^{*}$.

Alors $-\lambda \in \mathbb{R}_+^*$ donc d'après ce qui précède, on a $\lim_{n \to +\infty} -\lambda u_n = +\infty$ d'où

$$\lim_{n \to +\infty} \lambda u_n = -\infty.$$

2. Soit $\varepsilon > 0$.

Puisque $\lim_{n\to+\infty}u_n=+\infty$, il existe $n_0\in\mathbb{N}$ tel que pour tout $n\geq n_0, u_n\geq\frac{1}{\varepsilon}>0$ d'où

$$\forall n \ge n_0, 0 < \frac{1}{u_n} \le \varepsilon,$$

ce qui implique que $\lim_{n\to+\infty} \frac{1}{u_n} = 0^+$.

3. Soit $(v_n)_{n\in\mathbb{N}}$ une suite minorée telle que pour tout $n\in\mathbb{N}, v_n\geq m$, où $m\in\mathbb{R}$. Soit A>0.

Puisque $\lim_{n\to+\infty}u_n=+\infty$, il existe $n_0\in\mathbb{N}$ tel que pour tout $n\geq n_0,u_n\geq A-m$.

Ainsi, pour tout $n \geq n_0$, on a

$$u_n + v_n \ge A - m + m = A$$
,

ce qui implique que $\lim_{n \to +\infty} u_n + v_n = +\infty$.

4. • Supposons que $\lim_{n \to +\infty} v_n = l > 0$. Par définition, il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0, |v_n - l| \le \frac{l}{2}$ donc pour tout $n \ge n_0, v_n \ge \frac{l}{2} > 0$. Soit A > 0. Puisque $\lim_{n \to +\infty} u_n = +\infty$, il existe $n_1 \in \mathbb{N}$ tel que pour tout $n \ge n_1, u_n \ge n_2$

Soit
$$A > 0$$
. Puisque $\lim_{n \to +\infty} u_n = +\infty$, il existe $n_1 \in \mathbb{N}$ tel que pour tout $n \ge n_1, u_n \ge \frac{2A}{l} > 0$.

Soit $N = \max(n_0, n_1)$. Alors pour tout $n \ge N$, on a $u_n v_n \ge \frac{2A}{l} \frac{l}{2} = A$ d'où $\lim_{n \to +\infty} u_n v_n = +\infty$.

• Supposons que $\lim_{n \to +\infty} v_n = l < 0$.

Alors $\lim_{n \to +\infty} -v_n = -l > 0$ donc d'après ce qui précède,

$$\lim_{n \to +\infty} u_n(-v_n) = \lim_{n \to +\infty} -u_n v_n = +\infty$$

d'où $\lim_{n\to+\infty} u_n v_n = -\infty$.

5. • Soit $(v_n)_{n\in\mathbb{N}}$ une suite telle que $\lim_{n\to+\infty}v_n=+\infty$ (resp. $-\infty$).

Soit A > 0. Puisque $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ tendent vers $+\infty$, il existe deux entiers n_0 et n_1 tels que

$$\forall n \ge n_0, u_n \ge \sqrt{A} > 0$$
 et $\forall n \ge n_1, v_n \ge \sqrt{A} > 0$

d'où pour tout $n \ge \max(n_0, n_1), u_n v_n \ge A$, ce qui implique que $\lim_{n \to +\infty} u_n v_n = +\infty$.

• Si la suite $(v_n)_{n\in\mathbb{N}}$ tend vers $-\infty$, alors la suite $(-v_n)_{n\in\mathbb{N}}$ tend vers $+\infty$, et d'après ce qui précède, on a

$$\lim_{n \to +\infty} u_n(-v_n) = \lim_{n \to +\infty} -u_n v_n = +\infty$$

d'où $\lim_{n\to+\infty} u_n v_n = -\infty$.

On a des résultats analogues pour une suite tendant vers $-\infty$:

Proposition 7

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que $\lim_{n\to+\infty}u_n=-\infty$.

- 1. Pour tout $\lambda \in \mathbb{R}_+^*$, $\lim_{n \to +\infty} \lambda u_n = -\infty$ et pour tout $\lambda \in \mathbb{R}_-^*$, $\lim_{n \to +\infty} \lambda u_n = +\infty$.
- $2. \text{ On a } \lim_{n \to +\infty} \frac{1}{u_n} = 0^-.$
- 3. Si $(v_n)_{n\in\mathbb{N}}$ est une suite majorée (en particulier si $(v_n)_{n\in\mathbb{N}}$ est une suite convergente ou si $(v_n)_{n\in\mathbb{N}}$ tend vers $-\infty$), alors $\lim_{n\to+\infty}u_n+v_n=-\infty$.
- 4. Soit $(v_n)_{n\in\mathbb{N}}$ une suite convergente de limite $l\in\mathbb{R}$.
 - Si l > 0, alors $\lim_{n \to +\infty} u_n v_n = -\infty$.
 - Si l < 0, alors $\lim_{n \to +\infty} u_n v_n = +\infty$.
- 5. Si $(v_n)_{n\in\mathbb{N}}$ est une suite telle que $\lim_{n\to+\infty}v_n=+\infty$ (resp. $-\infty$), alors $\lim_{n\to+\infty}u_nv_n=-\infty$ (resp. $+\infty$).

Remarque 8. En effet, si une suite $(v_n)_{n\in\mathbb{N}}$ tend vers $-\infty$, elle est majorée car par définition, il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0, u_n \leq -1$ donc pour tout $n \in \mathbb{N}$,

$$u_n \le \max\{u_0, u_1, \dots, u_{n_0-1}, -1\}.$$

Démonstration. Il suffit d'appliquer les résultats de la proposition précédente à la suite $(-u_n)_{n\in\mathbb{N}}$ qui tend vers $+\infty$ et prendre l'opposé des résultats obtenus.

Proposition 8

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que $\lim_{n\to+\infty}u_n=0$.

1. (a) Si
$$\lim_{n \to +\infty} u_n = 0^+$$
, alors $\lim_{n \to +\infty} \frac{1}{u_n} = +\infty$.
(b) Si $\lim_{n \to +\infty} u_n = 0^-$, alors $\lim_{n \to +\infty} \frac{1}{u_n} = -\infty$.

(b) Si
$$\lim_{n \to +\infty} u_n = 0^-$$
, alors $\lim_{n \to +\infty} \frac{1}{u_n} = -\infty$.

2. Soit $(v_n)_{n\in\mathbb{N}}$ une suite bornée.

Alors
$$\lim_{n \to +\infty} u_n v_n = 0.$$

Démonstration.

1. (a) Supposons que $\lim_{n \to +\infty} u_n = 0^+$ et montrons que $\lim_{n \to +\infty} \frac{1}{u} = +\infty$. Soit A > 0.

Puisque $\lim_{n\to+\infty} u_n = 0^+$, il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0, 0 < u_n \leq \frac{1}{4}$ d'où

$$\forall n \ge n_0, \frac{1}{u_n} \ge A,$$

ce qui implique que $\lim_{n\to+\infty}\frac{1}{u_n}=+\infty$.

(b) Supposons que $\lim_{n \to +\infty} u_n = 0^-$, de telle sorte que $\lim_{n \to +\infty} -u_n = 0^+$.

D'après ce qui précède, on en déduit que $\lim_{n\to+\infty} -\frac{1}{u_n} = +\infty$ d'où

$$\lim_{n \to +\infty} \frac{1}{u_n} = -\infty.$$

2. Soit $(v_n)_{n\in\mathbb{N}}$ une suite bornée, i.e. il existe $r\in\mathbb{R}_+^*$ tel que pour tout $n\in\mathbb{N}, |v_n|\leq r$. Soit $\varepsilon > 0$.

Puisque $\lim_{n\to+\infty}u_n=0$, il existe $n_0\in\mathbb{N}$ tel que pour tout $n\geq n_0, |u_n|\leq \frac{\varepsilon}{r}$.

Ainsi, pour tout $n \ge n_0$,

$$|u_n v_n| \le r|u_n| \le r\frac{\varepsilon}{r} = \varepsilon,$$

ce qui prouve que $\lim_{n\to+\infty} u_n v_n = 0$.

Exemple 5. Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie pour tout $n\in\mathbb{N}^*$ par $u_n=\frac{\cos(n)}{n}$.

La suite $(\cos(n))_{n\in\mathbb{N}^*}$ est bornée et la suite $(\frac{1}{n})_{n\in\mathbb{N}^*}$ tend vers 0 donc la suite $(u_n)_{n\in\mathbb{N}^*}$ tend vers 0.

Remarque 9. On retient les règles suivantes quant aux opérations sur les limites : Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites.

Soient l et l' deux réels.

Année 2025-2026 10 / 33 Alex Panetta

$\lim_{n \to +\infty} u_n + v_n$	$\lim_{n \to +\infty} u_n = l$	$\lim_{n \to +\infty} u_n = +\infty$	$\lim_{n \to +\infty} u_n = -\infty$
$\lim_{n \to +\infty} v_n = l'$	l+l'	$+\infty$	$-\infty$
$\lim_{n \to +\infty} v_n = +\infty$	$+\infty$	$+\infty$	forme indéterminée
$\lim_{n \to +\infty} v_n = -\infty$	$-\infty$	forme indéterminée	$-\infty$

$\lim_{n \to +\infty} u_n v_n$	$\lim_{n \to +\infty} u_n = l > 0$	$\lim_{n \to +\infty} u_n = 0$	$\lim_{n \to +\infty} u_n = l < 0$
$\lim_{n \to +\infty} v_n = l' > 0$	ll'	0	ll'
$\lim_{n \to +\infty} v_n = 0$	0	0	0
$\lim_{n \to +\infty} v_n = l' < 0$	ll'	0	ll'
$\lim_{n \to +\infty} v_n = +\infty$	$+\infty$	forme indéterminée	$-\infty$
$\lim_{n \to +\infty} v_n = -\infty$	$-\infty$	forme indéterminée	$+\infty$

$\lim_{n \to +\infty} u_n v_n$	$\lim_{n \to +\infty} u_n = +\infty$	$\lim_{n \to +\infty} u_n = -\infty$
$\lim_{n \to +\infty} v_n = l' > 0$	$+\infty$	$-\infty$
$\lim_{n \to +\infty} v_n = 0$	forme indéterminée	forme indéterminée
$\lim_{n \to +\infty} v_n = l' < 0$	$-\infty$	$+\infty$
$\lim_{n \to +\infty} v_n = +\infty$	$+\infty$	$-\infty$
$\lim_{n \to +\infty} v_n = -\infty$	$-\infty$	$+\infty$

$\lim_{n \to +\infty} u_n = l \neq 0$	$\lim_{n \to +\infty} \frac{1}{u_n} = \frac{1}{l}$
$\lim_{n \to +\infty} u_n = 0^+$	$\lim_{n \to +\infty} \frac{1}{u_n} = +\infty$
$\lim_{n \to +\infty} u_n = 0^-$	$\lim_{n \to +\infty} \frac{1}{u_n} = -\infty$
$\lim_{n \to +\infty} u_n = +\infty$	$\lim_{n \to +\infty} \frac{1}{u_n} = 0^+$
$\lim_{n \to +\infty} u_n = -\infty$	$\lim_{n \to +\infty} \frac{1}{u_n} = 0^-$

On a plusieurs formes indéterminées :

- 1. Si $\lim_{n \to +\infty} u_n = +\infty$ et $\lim_{n \to +\infty} v_n = -\infty$, il peut tout se passer pour $\lim_{n \to +\infty} u_n + v_n$:

 Si $u_n = n$ et $v_n = -n$, alors $u_n + v_n = 0$.

 - Si $u_n = n$ et $v_n = -n + 1$, alors $u_n + v_n = 1$. Si $u_n = n^2$ et $v_n = -n$, alors $u_n + v_n = n^2 n = n(n-1) \underset{n \to +\infty}{\longrightarrow} +\infty$.
 - Si $u_n = n$ et $v_n = -n^2$, alors $u_n + v_n = n n^2 = n(1-n) \underset{n \to +\infty}{\longrightarrow} -\infty$.
- 2. Si $\lim_{n\to +\infty}u_n=0$ et $\lim_{n\to +\infty}v_n=+\infty$, il peut tout se passer pour $\lim_{n\to +\infty}u_nv_n$:
 - Si $u_n = \frac{1}{n}$ et $v_n = n$, alors $u_n v_n = 1$.
 - Si $u_n = \frac{1}{n^2}$ et $v_n = n$, alors $u_n v_n = \frac{1}{n} \underset{n \to +\infty}{\longrightarrow} 0$.
 - Si $u_n = \frac{1}{n}$ et $v_n = n^2$, alors $u_n v_n = n \xrightarrow[n \to +\infty]{} +\infty$.

Exemple 6. Pour lever une forme indéterminée de la forme $+\infty - \infty$ lorsqu'on est en présence de racines, multiplier par la quantité conjuguée permet de lever l'indétermination.

Par exemple, déterminons $\lim_{n\to+\infty} \sqrt{n+1} - \sqrt{n}$.

On a

$$\sqrt{n+1} - \sqrt{n} = (\sqrt{n+1} - \sqrt{n}) \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \xrightarrow[n \to +\infty]{} 0.$$

Enfin, mentionnons les propriétés importantes suivantes:

Proposition 9

Soit $p \in \mathbb{Z}$.

Alors

$$\lim_{n \to +\infty} n^p = \begin{cases} +\infty & \text{si } p > 0\\ 1 & \text{si } p = 0\\ 0 & \text{si } p < 0. \end{cases}$$

Démonstration. • Soit p > 0. Montrons que $\lim_{n \to +\infty} n^p = +\infty$.

Soit A > 0. Pour tout $n \ge A^{\frac{1}{p}}$, on a $n^p \ge A$.

Posons $n_0 = |A^{\frac{1}{p}}| + 1$.

- Alors pour tout $n \ge n_0, n^p \ge A$. Ceci montre que $\lim_{n \to +\infty} n^p = +\infty$. Soit p = 0. Alors pour tout $n \in \mathbb{N}, n^p = 1$ donc $\lim_{n \to +\infty} n^p = 1$.
- Soit p < 0. Montrons que $\lim_{n \to +\infty} n^p = 0$.

Soit $\varepsilon > 0$. Puisque -p > 0, on a montré précédemment qu'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0, n^{-p} \ge \frac{1}{\varepsilon}$.

Ainsi, pour tout $n \ge n_0$, $0 < n^p \le \varepsilon$, ce qui implique que $\lim_{n \to +\infty} n^p = 0$.

Remarque 10. Pour déterminer la limite d'expressions polynomiales ou de quotients de polynômes, on factorise par les termes de plus haut degré.

Exemple 7. • Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_n=n+3$ et $(v_n)_{n\in\mathbb{N}}$ la suite définie par

On a $\lim_{n\to+\infty}u_n=+\infty$ et $\lim_{n\to+\infty}v_n=-\infty$ donc a priori, la limite de la suite $(u_n+v_n)_{n\in\mathbb{N}}$ est indéterminée.

Mais en factorisant par n^2 , on trouve :

$$\lim_{n \to +\infty} u_n + v_n = \lim_{n \to +\infty} -n^2 + n + 3 = \lim_{n \to +\infty} n^2 \left(-1 + \frac{1}{n} + \frac{3}{n^2} \right).$$

Or, $\lim_{n\to+\infty} n^2 = +\infty$ et $\lim_{n\to+\infty} \left(-1 + \frac{1}{n} + \frac{3}{n^2}\right) = -1$ donc par produit des limites,

$$\lim_{n \to +\infty} n^2 \left(-1 + \frac{1}{n} + \frac{3}{n^2} \right) = -\infty.$$

• Déterminons $\lim_{n\to+\infty} \frac{3n^3+4}{2n^3-n+5}$. A priori, c'est une forme indéterminée de la forme $\frac{+\infty}{+\infty}$ $+\infty \times 0$.

Pour cela, on factorise le numérateur et le dénominateur par les termes de plus haut degré :

$$\frac{3n^3+4}{2n^3-n+5} = \frac{n^3}{n^3} \frac{3+\frac{4}{n^3}}{2-\frac{1}{n^2}+\frac{5}{n^3}} = \frac{3+\frac{4}{n^3}}{2-\frac{1}{n^2}+\frac{5}{n^3}} \underset{n \to +\infty}{\longrightarrow} \frac{3}{2}.$$

Enfin, mentionnons un dernier résultat que nous démontrerons dans le chapitre « Limites et continuité ».

Théorème 1

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle de limite $l\in\mathbb{R}\cup\{-\infty,+\infty\}$.

Soit f une application telle que $\lim_{x \to a} f(x) = l'$.

Alors

$$\lim_{n \to +\infty} f(u_n) = l'.$$

Exemple 8. On a $\lim_{n\to+\infty} \frac{1}{n} = 0$ et $\lim_{x\to 0} \cos(x) = 1$ donc

$$\lim_{n \to +\infty} \cos\left(\frac{1}{n}\right) = 1.$$

11.1.3 Résultats fondamentaux sur les limites et inégalités

Proposition 10

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

On suppose que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente de limite $l\in\mathbb{R}$.

- 1. Si l > 0, alors il existe $n_0 \in \mathbb{N}$, tel que pour tout $n \geq n_0, u_n > 0$.
- 2. Si l < 0, alors il existe $n_0 \in \mathbb{N}$, tel que pour tout $n \ge n_0, u_n < 0$.
- 3. S'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0, u_n > 0$ (ou $u_n \geq 0$), alors $l \geq 0$.
- 4. S'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0, u_n < 0$ (ou $u_n \leq 0$), alors $l \leq 0$.

Démonstration.

1. Supposons que l > 0. Soit $\varepsilon = \frac{l}{2} > 0$. Puisque $(u_n)_{n \in \mathbb{N}}$ converge vers l, il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0, |u_n - \tilde{l}| \leq \varepsilon$, i.e.

$$\forall n \ge n_0, l - \varepsilon \le u_n \le l + \varepsilon,$$

d'où pour tout $n \ge n_0$, $u_n \ge l - \varepsilon = \frac{l}{2} > 0$.

- 2. Supposons que l < 0. Alors la suite $(-u_n)_{n \in \mathbb{N}}$ converge vers -l > 0 donc d'après l'alinéa précédent, il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0, -u_n > 0$, i.e. pour tout $n \geq n_0, u_n < 0$.
- 3. Supposons qu'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0, u_n > 0$ (ou $u_n \geq 0$). Supposons par l'absurde que l < 0. Alors d'après l'alinéa précédent, il existe $n_1 \in \mathbb{N}$ tel que pour tout $n \ge n_1, u_n < 0$, ce qui contredit l'hypothèse que pour tout $n \ge n_0, u_n \ge 0$. L'hypothèse l < 0 est donc absurde, ce qui implique que $l \geq 0$.
- 4. Supposons qu'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0, u_n < 0$ (ou $u_n \leq 0$). Alors pour tout $n \ge n_0, -u_n > 0$ (ou $-u_n \ge 0$) donc d'après l'alinéa précédent, puisque la suite $(-u_n)_{n\in\mathbb{N}}$ converge vers -l, on a $-l\geq 0$ donc $l\leq 0$.

Remarque 11. Il faut noter qu'en passant à la limite, les inégalités strictes deviennent larges.

En effet, pour tout $n \in \mathbb{N}^*$, on a $\frac{1}{n} > 0$ mais $\lim_{n \to +\infty} \frac{1}{n} = 0$. Ainsi, si pour tout $n \ge n_0, u_n > 0$ alors $\lim_{n \to +\infty} u_n \ge 0$.

Année 2025-2026 13 / 33 Alex Panetta

Corollaire 1

Soit $a \in \mathbb{R}$. Soit $(u_n)_{n \in \mathbb{N}}$ une suite réelle convergente de limite $l \in \mathbb{R}$.

- 1. S'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geq n_0, u_n > a$ (ou $u_n \geq a$), alors $l \geq a$.
- 2. S'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \leq n_0, u_n < a$ (ou $u_n \leq a$), alors $l \leq a$.

Démonstration. Il suffit d'appliquer la proposition précédente à la suite $(u_n - a)_{n \in \mathbb{N}}$ qui converge vers l - a.

Théorème 2: Théorèmes de comparaison

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles. On suppose qu'il existe $n_0\in\mathbb{N}$ tel que pour tout $n\geq n_0$, alors $u_n\leq v_n$.

- 1. Si $\lim_{n \to +\infty} u_n = +\infty$, alors $\lim_{n \to +\infty} v_n = +\infty$.
- 2. Si $\lim_{n \to +\infty} v_n = -\infty$, alors $\lim_{n \to +\infty} u_n = -\infty$.
- 3. Si les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont convergentes de limites respectives l et l', alors $l \leq l'$.

Démonstration.

1. On suppose que $\lim_{n\to+\infty} u_n = +\infty$.

Soit A > 0. Il existe donc $n_1 \in \mathbb{N}$ tel que pour tout $n \ge n_1, u_n \ge A$.

Soit $N = \max(n_0, n_1)$. Pour tout $n \geq N$, on a alors $A \leq u_n \leq v_n$, ce qui implique que

$$\lim_{n \to +\infty} v_n = +\infty.$$

2. On suppose que $\lim_{n\to+\infty} v_n = -\infty$. On a donc pour tout $n \ge n_0, -v_n \le -u_n$ et $\lim_{n\to+\infty} -v_n = +\infty$.

D'après l'alinéa précédent, on en déduit que $\lim_{n\to +\infty} -u_n = +\infty$, d'où $\lim_{n\to +\infty} u_n = -\infty$.

3. On suppose que $\lim_{n\to+\infty}u_n=l\in\mathbb{R}$ et $\lim_{n\to+\infty}v_n=l'\in\mathbb{R}$.

Ceci implique que $\lim_{n \to +\infty} v_n - u_n = l' - l$.

Par ailleurs, on a pour tout $n \ge n_0, v_n - u_n \ge 0$. Donc d'après la proposition précédente, ceci implique que $\lim_{n \to +\infty} v_n - u_n \ge 0$, i.e. $l' - l \ge 0$ d'où $l \le l'$.

Exemple 9. On pose pour tout $n \in \mathbb{N}$, $u_n = (2 + (-1)^n)n$.

On a pour tout $n \in \mathbb{N}$, $2 + (-1)^n \ge 1$ donc pour tout $n \in \mathbb{N}$, $u_n \ge n$ donc par comparaison $\lim_{n \to +\infty} u_n = +\infty$.

Remarque 12. Il y a des cas où l'on ne peut rien conclure :

• Si $\lim_{n\to+\infty}v_n=l$ ou $\lim_{n\to+\infty}v_n=+\infty$, on ne peut rien conclure de l'inégalité $u_n\leq v_n$. Il se peut même que la suite $(u_n)_{n\in\mathbb{N}}$ n'admette pas de limite.

Par exemple, si pour tout $n \in \mathbb{N}$, $u_n = (-1)^n$ et $v_n = n+1$, alors on a pour tout $n \in \mathbb{N}$, $u_n \le v_n$. La suite $(v_n)_{n \in \mathbb{N}}$ tend vers $+\infty$ mais la suite $(u_n)_{n \in \mathbb{N}}$ n'a pas de limite.

• Idem si $\lim_{n\to+\infty} u_n = -\infty$ ou $\lim_{n\to+\infty} u_n = l \in \mathbb{R}$, on ne peut rien conclure quant à la suite $(v_n)_{n\in\mathbb{N}}$.

Année 2025-2026 14/33 Alex Panetta

Théorème 3: Théorème des gendarmes

Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ trois suites réelles. On suppose qu'il existe $n_0\in\mathbb{N}$ tel que pour tout $n \geq n_0, u_n \leq v_n \leq w_n$.

On suppose en outre que les suites $(u_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ convergent vers la même limite $l \in \mathbb{R}$.

Alors la suite $(v_n)_{n\in\mathbb{N}}$ est convergente et on a $\lim_{n\to\infty} v_n = l$.

Démonstration. Soit $\varepsilon > 0$. Puisque la suite $(u_n)_{n \in \mathbb{N}}$ converge vers l, il existe $n_1 \in \mathbb{N}$ tel que pour tout $n \ge n_1, |u_n - l| \le \varepsilon$, ce qui implique en particulier que pour tout $n \ge n_1, u_n \ge l - \varepsilon$.

De même, puisque la suite $(w_n)_{n\in\mathbb{N}}$ converge vers l, il existe $n_2\in\mathbb{N}$ tel que pour tout $n \geq n_2, |w_n - l| \leq \varepsilon$, ce qui implique en particulier que pour tout $n \geq n_2, w_n \leq l + \varepsilon$.

Posons $N = \max(n_0, n_1, n_2)$.

Alors pour tout $n \geq N$, on a

$$l - \varepsilon \le u_n \le v_n \le w_n \le l + \varepsilon$$

donc pour tout $n \geq N, l - \varepsilon \leq v_n \leq l + \varepsilon$, i.e. $|v_n - l| \leq \varepsilon$.

On en déduit que la suite $(v_n)_{n\in\mathbb{N}}$ est convergente et que $\lim_{n\to+\infty}v_n=l$.

Exemple 10. Soit $x \in \mathbb{R}$. On pose pour tout $n \in \mathbb{N}^*$, $u_n = \frac{\lfloor nx \rfloor}{n}$. Par définition de la partie entière, on a pour tout $n \in \mathbb{N}^*$,

$$nx - 1 < |nx| \le nx$$

donc pour tout $n \in \mathbb{N}^*$,

$$\frac{nx-1}{n} < \frac{\lfloor nx \rfloor}{n} \le x,$$

i.e. pour tout $n \in \mathbb{N}^*$,

$$x - \frac{1}{n} < u_n \le x$$

Puisque $\lim_{n \to +\infty} x - \frac{1}{n} = \lim_{n \to +\infty} x = x$, d'après le théorème des gendarmes, on peut en conclure que la suite $(u_n)_{n\in\mathbb{N}^*}$ est convergente et que $\lim_{n\to+\infty} u_n = x$.

11.1.4 Théorème de la limite monotone

Théorème 4: Théorème de la limite monotone

- 1. Toute suite réelle croissante et majorée converge.
- 2. Toute suite réelle décroissante et minorée converge.

Démonstration. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

1. On suppose que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée. Puisqu'elle est majorée, l'ensemble $A = \{u_n, n \in \mathbb{N}\}$ est une partie de \mathbb{R} non vide et majorée. Elle admet donc une borne supérieure $\sup(A)$.

Montrons que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers $\sup(A)$.

Soit $\varepsilon > 0$.

Par définition de $\sup(A)$, il existe $n_0 \in \mathbb{N}$ tel que $\sup(A) - \varepsilon < u_{n_0} \leq \sup(A)$.

Puisque la suite $(u_n)_{n\in\mathbb{N}}$ est croissante, alors pour tout $n\geq n_0, u_n\geq u_{n_0}$. De plus, par définition de $\sup(A)$, pour tout $n\in\mathbb{N}, u_n\leq \sup(A)$ donc pour tout $n\geq n_0$, on a

$$\sup(A) - \varepsilon < u_{n_0} \le u_n \le \sup(A)$$

i.e. pour tout $n \geq n_0, -\varepsilon < u_n - \sup(A) \leq 0 < \varepsilon$ d'où

$$\forall n \geq n_0, |u_n - \sup(A)| < \varepsilon,$$

ce qui prouve que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers $\sup(A)$.

2. On suppose que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée. Il existe donc $m\in\mathbb{R}$ tel que pour tout $n\in\mathbb{N}, u_n\geq m$.

Posons pour tout $n \in \mathbb{N}$, $v_n = -u_n$. Alors pour tout $n \in \mathbb{N}$, $v_n \leq -m$ donc la suite $(v_n)_{n \in \mathbb{N}}$ est majorée.

D'autre part, pour tout $n \in \mathbb{N}$, $v_{n+1} - v_n = -u_{n+1} + u_n \ge 0$ puisque la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante.

On en déduit que la suite $(v_n)_{n\in\mathbb{N}}$ est croissante et majorée. D'après l'alinéa précédent, on en déduit qu'elle est convergente de limite $l\in\mathbb{R}$ donc la suite $(u_n)_{n\in\mathbb{N}}$ converge vers -l.

Remarque 13. • On a donc prouvé qu'une suite croissante et majorée converge vers son plus petit majorant. De même, une suite décroissante et minorée converge vers son plus grand minorant.

• Réciproquement, soit A une partie de \mathbb{R} non vide et majorée. Il existe alors une suite à valeurs dans A convergeant vers $\sup(A)$.

En effet, par caractérisation de la borne supérieure, pour tout $n \in \mathbb{N}^*$, il existe $x_n \in A$ tel que $\sup(A) - \frac{1}{n} < x_n \leqslant \sup(A)$, i.e. $|x_n - \sup(A)| < \frac{1}{n}$. D'après le théorème des gendarmes, on en conclut alors que $\lim_{n \to +\infty} x_n = \sup(A)$.

De même, si A est une partie de $\mathbb R$ non vide et minorée, il existe une une suite à valeurs dans A convergeant vers $\inf(A)$.

Exemple 11. Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par $u_n = \sum_{k=0}^n \frac{1}{k!} + \frac{1}{nn!}$ pour tout entier naturel n non nul.

La suite $(u_n)_{n\in\mathbb{N}^*}$ est décroissante puisque pour tout $n\in\mathbb{N}^*$,

$$u_{n+1} - u_n = \frac{1}{(n+1)!} + \frac{1}{(n+1)(n+1)!} - \frac{1}{nn!} = \frac{n(n+1) + n - (n+1)^2}{n(n+1)(n+1)!} = -\frac{1}{n(n+1)(n+1)!} \le 0.$$

De plus, pour tout $n \in \mathbb{N}^*$, $u_n \geq 0$ donc la suite $(u_n)_{n \in \mathbb{N}^*}$ est décroissante et minorée.

D'après le théorème de la limite monotone, on en déduit que la suite $(u_n)_{n\in\mathbb{N}^*}$ est convergente. On montrera plus tard qu'elle converge vers e.

Théorème 5

- 1. Toute suite réelle croissante et non majorée tend vers $+\infty$.
- 2. Toute suite réelle décroissante et non minorée tend vers $-\infty$.

Démonstration. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

- 1. On suppose que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante et non majorée.
 - Soit A > 0. Puisque la suite $(u_n)_{n \in \mathbb{N}}$ n'est pas majorée, A n'est pas un majorant de la suite $(u_n)_{n \in \mathbb{N}}$ donc il existe un entier $n_0 \in \mathbb{N}$ tel que $u_{n_0} > A$.

Puisque la suite $(u_n)_{n\in\mathbb{N}}$ est croissante, alors pour tout $n\geq n_0, u_n\geq u_{n_0}>A$, ce qui implique que $\lim_{n\to+\infty}u_n=+\infty$.

2. On suppose que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante et non minorée.

Alors la suite $(-u_n)_{n\in\mathbb{N}}$ est croissante et non majorée donc d'après l'alinéa précédent, on a $\lim_{n\to+\infty}-u_n=+\infty$ d'où $\lim_{n\to+\infty}u_n=-\infty$.

Remarque 14. En revanche, une suite non majorée (mais pas forcément croissante) ne tend pas nécessairement vers $+\infty$.

En effet, considérons pour tout $n \in \mathbb{N}$, $u_n = (-1)^n n$.

La suite $(u_n)_{n\in\mathbb{N}}$ n'est pas majorée (car $\lim_{n\to+\infty}u_{2n}=+\infty$) mais ne tend pas vers $+\infty$ car $\lim_{n\to+\infty}u_{2n+1}=-\infty$.

11.1.5 Suites adjacentes

Définition 6: Suites adjacentes

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles.

On dit que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes si elles vérifient les trois propriétés suivantes :

- La suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
- La suite $(v_n)_{n\in\mathbb{N}}$ est décroissante.
- La suite $(v_n u_n)_{n \in \mathbb{N}}$ est convergente et $\lim_{n \to +\infty} v_n u_n = 0$.

Remarque 15. On ne suppose pas a priori que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ soient convergentes.

Exemple 12. Posons pour tout entier naturel $n \in \mathbb{N}^*$, $u_n = 1 - \frac{1}{n}$ et $v_n = 1 + \frac{1}{n}$.

- Pour tout $n \in \mathbb{N}^*$, $u_{n+1} u_n = -\frac{1}{n+1} + \frac{1}{n} = \frac{1}{n(n+1)} > 0$ donc la suite $(u_n)_{n \in \mathbb{N}}$ est croissante.
- Pour tout $n \in \mathbb{N}^*$, $v_{n+1} v_n = \frac{1}{n+1} \frac{1}{n} = -\frac{1}{n(n+1)} < 0$ donc la suite $(v_n)_{n \in \mathbb{N}}$ est décroissante.
 - Pour tout $n \in \mathbb{N}$, on a

$$v_n - u_n = \frac{2}{n} \underset{n \to +\infty}{\longrightarrow} 0$$

donc les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes.

Lemme 1

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites adjacentes avec la suite $(u_n)_{n\in\mathbb{N}}$ croissante et la suite $(v_n)_{n\in\mathbb{N}}$ décroissante.

Alors

$$\forall n \in \mathbb{N}, u_n < v_n$$
.

Démonstration. Posons pour tout $n \in \mathbb{N}$, $w_n = v_n - u_n$.

Par définition des suites adjacentes, la suite $(w_n)_{n\in\mathbb{N}}$ converge vers 0.

D'autre part, pour tout $n \in \mathbb{N}$, on a

$$w_{n+1} - w_n = (v_{n+1} - u_{n+1}) - (v_n - u_n) = (v_{n+1} - v_n) - (u_{n+1} - u_n).$$

Puisque les suites $(v_n)_{n\in\mathbb{N}}$ et $(u_n)_{n\in\mathbb{N}}$ sont décroissante et croissante respectivement, on a $v_{n+1}-v_n\leq 0$ et $u_{n+1}-u_n\geq 0$ donc $w_{n+1}-w_n\leq 0$.

Ainsi, la suite $(w_n)_{n\in\mathbb{N}}$ est décroissante et converge vers 0.

Nécessairement (cf. preuve du théorème de la limite monotone), alors $0 = \inf\{w_n, n \in \mathbb{N}\}\$ donc pour tout $n \in \mathbb{N}, w_n \geq 0$, i.e.

$$\forall n \in \mathbb{N}, u_n \leq v_n.$$

Remarque 16. Avec les mêmes notations que précédemment, on a donc pour tout entier naturel $n \in \mathbb{N}$,

$$u_0 \le u_1 \le u_2 \le \dots \le u_{n-1} \le u_n \le v_n \le v_{n-1} \le \dots v_2 \le v_1 \le v_0.$$

Théorème 6: Théorème des suites adjacentes

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites adjacentes.

Alors les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont convergentes et on a

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n.$$

Démonstration. On peut supposer sans perte de généralité que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante et la suite $(v_n)_{n\in\mathbb{N}}$ est décroissante.

D'après le lemme précédent, on a pour tout $n \in \mathbb{N}$, $u_n \leq v_n$. Puisque la suite $(v_n)_{n \in \mathbb{N}}$ est décroissante, alors pour tout $n \in \mathbb{N}$, $v_n \leq v_0$ donc pour tout $n \in \mathbb{N}$, $u_n \leq v_0$.

Ainsi, la suite $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée par v_0 . D'après le théorème de la limite monotone, elle est donc convergente vers une limite $l\in\mathbb{R}$.

De même, puisque la suite $(u_n)_{n\in\mathbb{N}}$ est croissante, alors pour tout $n\in\mathbb{N}, u_0\leq u_n\leq v_n$ donc la suite $(v_n)_{n\in\mathbb{N}}$ est décroissante et minorée par u_0 .

D'après le théorème de la limite monotone, elle est convergente vers une limite l'.

Or, par hypothèse, on a $\lim_{n\to+\infty} v_n - u_n = l' - l = 0$ donc l = l'.

On en conclut que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont convergentes et de même limite.

Remarque 17. • Une fois prouvée la convergence de la suite $(u_n)_{n\in\mathbb{N}}$, on pouvait simplement remarquer que $v_n=(v_n-u_n)+u_n$ donc la suite $(v_n)_{n\in\mathbb{N}}$ converge comme somme de suites convergentes et

$$\lim_{n \to +\infty} v_n = \lim_{n \to +\infty} (v_n - u_n) + \lim_{n \to +\infty} u_n = 0 + l = l.$$

• Avec les mêmes notations que dans la preuve, si on note l la limite commune des suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$, on a alors pour tout $n\in\mathbb{N}$,

$$u_0 \le u_1 \le u_2 \le \dots \le u_{n-1} \le u_n \le l \le v_n \le v_{n-1} \le \dots v_2 \le v_1 \le v_0.$$

Exemple 13. Dans l'exemple pris ci-dessus, les deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergeaient toutes deux vers 1.

Année 2025-2026 18 / 33 Alex Panetta

_

Proposition 11: Approximations décimales d'un réel

Soit $x \in \mathbb{R}$.

Posons pour tout $n \in \mathbb{N}$, $u_n = \frac{\lfloor 10^n x \rfloor}{10^n}$ et $v_n = \frac{\lceil 10^n x \rceil}{10^n}$. Les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ sont deux suites adjacentes, de limite x.

Pour tout $n \in \mathbb{N}$, u_n et v_n sont respectivement les valeurs décimales approchées à 10^{-n} près de x par défaut et par excès.

Remarque 18. On rappelle que pour tout $x \in \mathbb{R}$, la partie entière supérieure de x, notée [x], est l'unique entier tel que

$$\lceil x \rceil - 1 < x \leqslant \lceil x \rceil.$$

Autrement dit, [x] est le plus petit entier supérieur ou égal à x.

Exemple 14. Avec les notations précédentes, si x = 1,863457, on a $u_0 = 1, v_0 = 2, u_1 = 1, v_0 = 1, v_0$ $1, 8, v_1 = 1, 9, u_2 = 1, 86, v_2 = 1, 87, \text{ etc...}$

Démonstration. • Montrons que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.

Pour tout $n \in \mathbb{N}$, on a $u_{n+1} - u_n = \frac{\lfloor 10^{n+1}x \rfloor}{10^{n+1}} - \frac{\lfloor 10^nx \rfloor}{10^n} = \frac{1}{10^{n+1}} \left(\lfloor 10^{n+1}x \rfloor - 10\lfloor 10^nx \rfloor \right)$. Or, par définition, on a pour tout $n \in \mathbb{N}$, $\lfloor 10^nx \rfloor \leqslant 10^nx$ d'où $10\lfloor 10^nx \rfloor \leqslant 10^{n+1}x$.

Puisque $|10^{n+1}x|$ est le plus grand entier inférieur ou égal à $10^{n+1}x$, on en déduit que $|10|10^n x| \leq |10^{n+1} x|$, ce qui prouve que $u_{n+1} - u_n \geq 0$, et ce pour tout $n \in \mathbb{N}$.

Ainsi, la suite $(u_n)_{n\in\mathbb{N}}$ est bien croissante.

• Montrons que la suite $(v_n)_{n\in\mathbb{N}}$ est décroissante. Pour tout $n\in\mathbb{N}$, on a $v_{n+1}-v_n=\frac{\lceil 10^{n+1}x\rceil}{10^{n+1}}-\frac{\lceil 10^nx\rceil}{10^n}=\frac{1}{10^{n+1}}(\lceil 10^{n+1}x\rceil-10\lceil 10^nx\rceil)$.

Or, par définition, on a pour tout $n \in \mathbb{N}$, $\lceil 10^n x \rceil \geqslant 10^n x$ d'où $10 \lceil 10^n x \rceil \geqslant 10^{n+1} x$

Puisque $\lceil 10^{n+1}x \rceil$ est le plus petit entier supérieur ou égal à $10^{n+1}x$, on en déduit que $10\lceil 10^n x \rceil \geqslant \lceil 10^{n+1} x \rceil$, ce qui prouve que $v_{n+1} - v_n \leqslant 0$, et ce pour tout $n \in \mathbb{N}$.

Ainsi, la suite $(v_n)_{n\in\mathbb{N}}$ est bien décroissante.

• Pour tout $n \in \mathbb{N}$, on a $10^n x - 1 < \lfloor 10^n x \rfloor \leqslant 10^n x$ donc $x - \frac{1}{10^n} < u_n \leqslant x$ d'où $-x \leqslant -u_n < \frac{1}{10^n} - x.$

De même, pour tout $n \in \mathbb{N}, 10^n x \leq \lceil 10^n x \rceil < 10^n x + 1$ donc $x \leq v_n < x + \frac{1}{10^n}$

Ainsi, pour tout $n \in \mathbb{N}, 0 \leq v_n - u_n < \frac{2}{10^n}$

Puisque $\lim_{n\to+\infty}\frac{2}{10^n}=0$, on déduit du théorème des gendarmes que $\lim_{n\to+\infty}v_n-u_n=0$.

On en conclut que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes. • Enfin, puisque pour tout $n\in\mathbb{N}, x-\frac{1}{10^n}< u_n\leqslant x$ et que $\lim_{n\to+\infty}x-\frac{1}{10^n}=x$, on déduit du théorème des gendarmes que $\lim_{n\to+\infty} u_n = x$.

Puique les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes, on en conclut que

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = x.$$

Corollaire 2: Densité de \mathbb{Q} dans \mathbb{R}

Tout réel est limite d'une suite de nombres rationnels.

Démonstration. Soit $x \in \mathbb{R}$. Montrons qu'il existe une suite à valeurs rationnelles qui converge vers x.

Posons pour tout $n \in \mathbb{N}, u_n = \frac{\lfloor 10^n x \rfloor}{10^n}$. On a pour tout $n \in \mathbb{N}, u_n \in \mathbb{Q}$ et d'après la proposition précédente, $\lim_{n \to +\infty} u_n = x$ donc la suite $(u_n)_{n \in \mathbb{N}}$ convient.

Remarque 19. Plus précisément, la proposition précédente montre que pour tout réel x, il existe deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ de nombres rationnels convergeant vers x telles que

$$\forall n \in \mathbb{N}, u_n \leqslant x \leqslant v_n.$$

Exemple 15. Pour le nombre $\pi = 3, 141592...$, on a avec les mêmes notations que précédemment $u_0 = 3, v_0 = 4, u_1 = 3, 1, v_1 = 3, 2, u_2 = 3, 14, v_2 = 3, 15, u_3 = 3, 141, v_3 = 3, 142, ...$

11.1.6 Suites extraites

Définition 7: Extractrice

On appelle extractrice toute fonction $\varphi: \mathbb{N} \longrightarrow \mathbb{N}$ strict ement croissante.

Exemple 16. Les applications $n \mapsto n, n \mapsto 2n, n \mapsto 2n + 1, n \mapsto 3n$, etc. sont des extractrices.

Lemme 2

Soit $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ une extractrice. Alors pour tout $n \in \mathbb{N}, \varphi(n) \geqslant n$.

Démonstration. Montrons cette propriété par récurrence sur n.

- •Initialisation: Pour n=0, on a nécessairement $\varphi(0) \geq 0$ puisque $\varphi(0) \in \mathbb{N}$.
- •**Hérédité**: Soit $n \in \mathbb{N}$ fixé tel que $\varphi(n) \ge n$. Montrons que $\varphi(n+1) \ge n+1$.

Puisque φ est strictement croissante, on a $\varphi(n+1) > \varphi(n) \ge n$ par hypothèse de récurrence. Or, $\varphi(n+1) \in \mathbb{N}$ donc $\varphi(n+1) > n$ implique $\varphi(n+1) \ge n+1$, ce qui prouve la propriété au rang n+1 et achève la récurrence.

Définition 8: Suite extraite

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

On appelle suite extraite de la suite $(u_n)_{n\in\mathbb{N}}$ toute suite de la forme $(u_{\varphi(n)})_{n\in\mathbb{N}}$ où φ : $\mathbb{N} \longrightarrow \mathbb{N}$ est une extractrice.

Remarque 20. Concrètement, une suite extraite contient une infinité de termes de la suite initiale, mais pas forcément tous les termes.

Exemple 17. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Soit $(v_n)_{n\in\mathbb{N}} = (u_{\varphi(n)})_{n\in\mathbb{N}}$ où $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ est une extractrice.

- Si pour tout $n \in \mathbb{N}$, $\varphi(n) = 2n$, alors $v_0 = u_0, v_1 = u_2, v_2 = u_4, v_3 = u_6...$
- Si pour tout $n \in \mathbb{N}$, $\varphi(n) = 2n + 1$, alors $v_0 = u_1, v_1 = u_3, v_2 = u_5, v_3 = u_7...$
- Si pour tout $n \in \mathbb{N}$, $\varphi(n) = 3n$, alors $v_0 = u_0, v_1 = u_3, v_2 = u_6, v_3 = u_9...$

Remarque 21. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Soit $(v_n)_{n\in\mathbb{N}}$ une suite extraite de la suite $(u_n)_{n\in\mathbb{N}}$, i.e. il existe une extractrice $\varphi:\mathbb{N}\longrightarrow\mathbb{N}$ telle que pour tout $n\in\mathbb{N}, v_n=u_{\varphi(n)}$.

Soit $(w_n)_{n\in\mathbb{N}}$ une suite extraite de la suite $(v_n)_{n\in\mathbb{N}}$, i.e. il existe une extractrice $\psi:\mathbb{N}\longrightarrow\mathbb{N}$ telle que pour tout $n\in\mathbb{N}, w_n=v_{\psi(n)}=u_{\varphi(\psi(n))}$.

L'extractrice est alors $\varphi \circ \psi$ et non $\psi \circ \varphi$ comme on pourrait s'y attendre puisque la première extractrice utilisée est φ ! Ceci est normal puisqu'en extrayant plusieus fois d'affilée, les rangs de la suite de départ considérés doivent rester dans l'image de la première extractrice, à savoir φ .

Théorème 7

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

On suppose que $\lim_{n\to+\infty} u_n = l \in \mathbb{R} \cup \{-\infty, +\infty\}.$

Alors pour toute extractrice $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$, $\lim_{n \to +\infty} u_{\varphi(n)} = l$.

Autrement dit, si une suite possède une limite, toutes ses suites extraites possèdent la même limite.

Démonstration. Faisons la démonstration dans le cas où $\lim_{n\to+\infty}u_n=l\in\mathbb{R}$. Les cas où la limite serait infine est analogue en revenant aux définitions.

Soit $\varphi: \mathbb{N} \longrightarrow \mathbb{N}$ une extractrice. Montrons que $\lim_{n \to +\infty} u_{\varphi(n)} = l$.

Soit $\varepsilon > 0$.

Puisque $\lim_{n\to+\infty}u_n=l$, par définition, il existe $n_0\in\mathbb{N}$ tel que pour tout $n\geqslant n_0, |u_n-l|\leqslant \varepsilon$.

Or, pour tout $n \ge n_0, \varphi(n) \ge n \ge n_0$ donc $|u_{\varphi(n)} - l| \le \varepsilon$.

Autrement dit, pour tout $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0, |u_{\varphi(n)} - l| \le \varepsilon$, ce qui prouve que $\lim_{n \to +\infty} u_{\varphi(n)} = l$.

Remarque 22. En revanche, il existe des suites dont une infinité de sous-suites convergent vers la même limite sans que la suite elle-même soit convergente.

Exemple 18. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie pour tout $n\in\mathbb{N}$ par $u_n=1$ si n est premier, 0 sinon.

Pour tout $k \in \mathbb{N}$ avec $k \ge 2$, la suite extraite $(u_{kn})_{n \in \mathbb{N}}$ converge vers 0 (car pour tout $n \ge 2, u_{kn} = 0$) mais la suite $(u_n)_{n \in \mathbb{N}}$ ne converge pas (en effet, elle est à valeurs entières mais n'est pas stationnaire puisqu'il existe une infinité de nombres premiers et une infinité de nombres non premiers).

On a néanmoins une réciproque partielle au théorème.

Proposition 12

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

Si les deux suites extraites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers la même limite $l\in\mathbb{R}\cup\{-\infty,+\infty\}$, alors

$$\lim_{n \to +\infty} u_n = l.$$

Démonstration. Faisons la démonstration dans le cas où $l \in \mathbb{R}$. Les cas où la limite serait infinie est analogue.

Supposons que $\lim_{n\to+\infty}u_{2n}=\lim_{n\to+\infty}u_{2n+1}=l\in\mathbb{R}.$

Soit $\varepsilon > 0$. Par définition, il existe deux entiers n_0 et n_1 tels que

$$\forall n \geq n_0, |u_{2n} - l| \leq \varepsilon \quad \text{et} \quad \forall n \geq n_1, |u_{2n+1} - l| \leq \varepsilon.$$

Soit $N = \max(n_0, n_1)$. Alors pour tout $n \ge N$, on a $n \ge n_0$ et $n \ge n_1$ donc pour tout $n \ge N$, on a

$$|u_{2n}-l| \le \varepsilon$$
 et $|u_{2n+1}-l| \le \varepsilon$,

i.e.

$$\forall n \geq 2N, |u_n - l| \leq \varepsilon,$$

d'où $\lim_{n\to+\infty} u_n = l \in \mathbb{R}$.

Exemple 19. La suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par $u_n=(-1)^n$ n'est pas convergente puisque pour tout $n\in\mathbb{N}$, on a $u_{2n}=1$ et $u_{2n+1}=-1$ donc $\lim_{n\to+\infty}u_{2n}=1$ et $\lim_{n\to+\infty}u_{2n+1}=-1$. Ainsi, les deux suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont convergentes de limite différente, ce qui implique que la suite $(u_n)_{n\in\mathbb{N}}$ ne peut pas être convergente.

En revanche, la suite $(u_n)_{n\in\mathbb{N}}$ est bornée puisque pour tout $n\in\mathbb{N}$, on a $|u_n|=1$. Ainsi, une suite bornée n'est pas nécessairement convergente.

11.1.7 Suites complexes

Définition 9

On appelle suite complexe toute application définie sur une partie de \mathbb{N} de la forme $\mathbb{N} \cap [n_0, +\infty[$ où $n_0 \in \mathbb{N}$ et à valeurs dans \mathbb{C} . Autrement dit, à tout entier naturel $n \geq n_0$, on associe un nombre complexe u(n) qu'on note u_n .

On note $(u_n)_{n\geq n_0}$ une telle suite.

Le nombre complexe u_n s'appelle le terme général de la suite $(u_n)_{n\in\mathbb{N}}$.

Remarque 23. L'ensemble des suites complexes se note $\mathbb{C}^{\mathbb{N}}$, car c'est l'ensemble des applications définies sur \mathbb{N} à valeurs dans \mathbb{C} .

Définition 10: Convergence d'une suite complexe

Soit $(u_n)_{n\in\mathbb{N}}$ une suite complexe. Pour tout $n\in\mathbb{N}$, il existe un unique couple $(v_n,w_n)\in\mathbb{R}^2$ tel que $u_n=v_n+iw_n$.

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente si les deux suites réelles $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ le sont et on note dans ce cas :

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n + i \lim_{n \to +\infty} w_n.$$

Remarque 24. Ainsi, la convergence d'une suite complexe se ramène à la convergence de ses parties réelle et imaginaire. Les résultats précédents s'étendent alors naturellement aux suites complexes en les appliquant à leurs parties réelle et imaginaire.

11.2 Suites usuelles

11.2.1 Suites arithmétiques

Définition 11: Suites arithmétiques

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Soit $r\in\mathbb{R}$.

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est arithmétique de raison r si

$$\forall n \in \mathbb{N}, u_{n+1} = u_n + r.$$

Exemple 20. Soit $r \in \mathbb{R}$. Soit $(u_n)_{n \in \mathbb{N}}$ la suite définie pour tout $n \in \mathbb{N}$ par $u_n = nr$.

Pour tout $n \in \mathbb{N}$, on a $u_{n+1} - u_n = (n+1)r - nr = r$ donc la suite $(u_n)_{n \in \mathbb{N}}$ est arithmétique de raison r.

Remarque 25. Une suite arithmétique est de raison nulle si et seulement si elle est constante.

Proposition 13

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r. Alors

$$\forall n \in \mathbb{N}, u_n = u_0 + nr.$$

Démonstration. Montrons la propriété par récurrence sur $n \in \mathbb{N}$.

Pour n = 0, on a $u_0 + 0 \times r = u_0$ donc la propriété est vraie au rang n = 0.

Soit $n \in \mathbb{N}$. On suppose que $u_n = u_0 + nr$. Montrons la propriété au rang n + 1.

Puisque la suite $(u_n)_{n\in\mathbb{N}}$ est arithmétique de raison r, on a

$$u_{n+1} = u_n + r = u_0 + nr + r = u_0 + (n+1)r$$

ce qui prouve la propriété au rang n+1 et achève la récurrence.

Remarque 26. Ceci signifie qu'une suite arithmétique est entièrement définie par son premier terme et sa raison.

Exemple 21. Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de premier terme $u_0=3$ et raison r=-5. Alors pour tout $n\in\mathbb{N}, u_n=3-5n$.

Corollaire 3: Limite d'une suite arithmétique

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de premier terme u_0 et de raison r. Alors

$$\lim_{n \to +\infty} u_n = \begin{cases} +\infty & \text{si } r > 0 \\ u_0 & \text{si } r = 0 \\ -\infty & \text{si } r < 0. \end{cases}$$

Démonstration. On sait que pour tout $n \in \mathbb{N}$, $u_n = u_0 + nr$.

- \bullet Si r>0, on a $\lim_{n\to +\infty} nr = +\infty$ d'où le résultat.
- Si r = 0, alors pour tout $n \in \mathbb{N}$, $u_n = u_0$ d'où le résultat.
- \bullet Si r<0, on a $\lim_{n\to +\infty} nr=-\infty$ d'où le résultat.

Proposition 14: Somme de termes consécutifs d'une suite arithmétique

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r.

Soient $(p, n) \in \mathbb{N}^2$ avec $p \leq n$.

Alors

$$\sum_{k=p}^{n} u_k = \underbrace{(n-p+1)}_{\text{nombre de termes}} \times \underbrace{\frac{u_p + u_n}{2}}_{\substack{\text{moyenne des termes} \\ \text{extrêmes}}}.$$

En particulier, on a

$$\sum_{k=0}^{n} u_k = (n+1) \times \frac{u_0 + u_n}{2}.$$

Démonstration. Soient $(p, n) \in \mathbb{N}^2$ avec $p \leq n$. On a

$$\sum_{k=p}^{n} u_{k} = \sum_{k=p}^{n} (u_{0} + kr)$$

$$= \sum_{k=p}^{n} u_{0} + r \sum_{k=p}^{n} k$$

$$= (n - p + 1)u_{0} + r(n - p + 1) \times \frac{p + n}{2}$$

$$= (n - p + 1) \times \frac{2u_{0} + pr + nr}{2}$$

$$= (n - p + 1) \times \frac{u_{0} + pr + u_{0} + nr}{2}$$

$$= (n - p + 1) \times \frac{u_{p} + u_{n}}{2}.$$

Pour p = 0, on retrouve la formule

$$\sum_{k=0}^{n} u_k = (n+1) \times \frac{u_0 + u_n}{2}.$$

Exemple 22. Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de premier terme $u_0=-3$ et de raison r=2. Alors

$$\sum_{k=13}^{37} u_k = (37 - 13 + 1) \frac{u_{13} + u_{37}}{2} = 25 \frac{-3 + 2 \times 13 - 3 + 2 \times 37}{2} = 47 \times 25 = 1175.$$

11.2.2 Suites géométriques

Définition 12: Suites géométriques

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Soit $q\in\mathbb{R}$.

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est géométrique de raison q si

$$\forall n \in \mathbb{N}, u_{n+1} = q \times u_n.$$

Exemple 23. Soit $q \in \mathbb{R}$. Soit $(u_n)_{n \in \mathbb{N}}$ la suite définie pour tout $n \in \mathbb{N}$ par $u_n = q^n$.

Pour tout $n \in \mathbb{N}$, on a $u_{n+1} = q^{n+1} = q \times q^n = q \times u_n$ donc la suite $(u_n)_{n \in \mathbb{N}}$ est géométrique de raison q.

Remarque 27. Une suite géométrique est de raison q = 1 si et seulement si elle est constante.

Proposition 15

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q. Alors

$$\forall n \in \mathbb{N}, u_n = u_0 \times q^n.$$

Démonstration. Montrons la propriété par récurrence sur $n \in \mathbb{N}$.

Pour n = 0, on a $u_0 \times q^0 = u_0$ donc la propriété est vraie au rang n = 0.

Soit $n \in \mathbb{N}$. On suppose que $u_n = u_0 \times q^n$. Montrons la propriété au rang n+1.

Année 2025-2026 Alex Panetta

_

Puisque la suite $(u_n)_{n\in\mathbb{N}}$ est géométrique de raison q, on a

$$u_{n+1} = q \times u_n = q \times u_0 \times q^n = u_0 \times q^{n+1}$$

ce qui prouve la formule au rang n+1 et achève la récurrence.

Remarque 28. • Ceci signifie qu'une suite géométrique est entièrement définie par son premier terme et sa raison.

- Une suite géométrique de premier terme $u_0 = 0$ est identiquement nulle.
- Si q = 0, alors pour tout $n \ge 1$, $u_n = 0$. Ainsi, tous les termes d'une suite géométrique de raison nulle sont nuls, saufs évenutellement le premier terme u_0 .

Exemple 24. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de premier terme $\sqrt{2}$ et de raison π . Alors pour tout $n\in\mathbb{N}, u_n=\sqrt{2}\times\pi^n$.

Corollaire 4: Limite d'une suite géométrique

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de premier terme $u_0\neq 0$ et de raison $q\in\mathbb{R}$.

1. Si q > 1, alors

$$\lim_{n \to +\infty} u_n = \begin{cases} +\infty & \text{si } u_0 > 0 \\ -\infty & \text{si } u_0 < 0. \end{cases}$$

2. Si q = 1, alors

$$\lim_{n \to +\infty} u_n = u_0.$$

3. Si |q| < 1, alors

$$\lim_{n \to +\infty} u_n = 0.$$

4. Si $q \leq -1$, alors la suite $(u_n)_{n \in \mathbb{N}}$ n'admet pas de limite.

Démonstration. D'après la proposition précédente, on a pour tout $n \in \mathbb{N}$, $u_n = u_0 \times q^n$. Il s'agit donc de déterminer la limite de la suite $(q^n)_{n \in \mathbb{N}}$ si celle-ci existe.

1. Supposons que q>1. Alors $\lim_{n\to +\infty}q^n=\lim_{n\to +\infty}e^{n\ln(q)}=+\infty$ car $\ln(q)>0$ donc

$$\lim_{n \to +\infty} u_0 \times q^n = \begin{cases} +\infty & \text{si } u_0 > 0 \\ -\infty & \text{si } u_0 < 0. \end{cases}$$

- 2. Supposons que q=1. Alors pour tout $n \in \mathbb{N}$, $u_n=u_0$ donc le résultat en découle.
- 3. Supposons |q| < 1, i.e. -1 < q < 1.
 - \bullet Si 0 < q < 1,alors $\lim_{n \to +\infty} q^n = \lim_{n \to +\infty} e^{n \ln(q)} = 0$ car $\ln(q) < 0$ donc

$$\lim_{n \to +\infty} u_0 \times q^n = 0.$$

- Si q=0, alors pour tout $n\geq 1, u_n=0$ donc le résultat en découle.
- Si -1 < q < 0 alors 0 < -q < 1 donc $\lim_{n \to +\infty} q^n = \lim_{n \to +\infty} (-1)^n (-q)^n = 0$ car la suite $((-1)^n)_{n \in \mathbb{N}}$ est bornée et la suite $((-q)^n)_{n \in \mathbb{N}}$ tend vers 0.

On a donc bien $\lim_{n\to+\infty} u_0 \times q^n = 0$.

- 4. Supposons que $q \leq -1$.
 - Si q=-1, alors pour tout $n \in \mathbb{N}$, $u_n=(-1)^n u_0$ donc pour tout $n \in \mathbb{N}$,

$$u_{2n} = u_0 \xrightarrow[n \to +\infty]{} u_0$$
 et $u_{2n+1} = -u_0 \xrightarrow[n \to +\infty]{} -u_0$.

Or, $u_0 \neq -u_0$ car $u_0 \neq 0$ donc les suites $(u_{2n})_{n \in \mathbb{N}}$ et $(u_{2n+1})_{n \in \mathbb{N}}$ sont convergentes de limites différentes. On en déduit que la suite $(u_n)_{n \in \mathbb{N}}$ n'admet pas de limite.

• Si q < -1. Alors -q > 1 et on a pour tout $n \in \mathbb{N}$, $u_n = u_0 \times (-1)^n (-q)^n$. Ainsi, pour tout $n \in \mathbb{N}$,

$$u_{2n} = u_0 \times (-q)^{2n} = u_0 \times (q^2)^n \underset{n \to +\infty}{\longrightarrow} \left\{ \begin{array}{l} +\infty & \text{si } u_0 > 0 \\ -\infty & \text{si } u_0 < 0. \end{array} \right.$$

 $car q^2 > 1 et$

$$u_{2n+1} = -u_0 \times (-q)^{2n+1} = qu_0 \times (q^2)^n \underset{n \to +\infty}{\longrightarrow} \begin{cases} -\infty & \text{si } u_0 > 0 \\ +\infty & \text{si } u_0 < 0. \end{cases}$$

car q < 0 et $q^2 > 1$.

Ainsi, on a $\lim_{n\to+\infty}u_{2n}\neq\lim_{n\to+\infty}u_{2n+1}$ donc la suite $(u_n)_{n\in\mathbb{N}}$ n'admet pas de limite.

Proposition 16: Somme de termes consécutifs d'une suite géométrique

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q. Soient $(p,n)\in\mathbb{N}^2$ avec $p\leq n$. Alors

$$\sum_{k=p}^{n} u_k = \begin{cases} u_p \frac{1 - q^{n-p+1}}{1 - q} & \text{si } q \neq 1\\ (n - p + 1)u_0 & \text{si } q = 1. \end{cases}$$

En particulier, on a

$$\sum_{k=0}^{n} u_k = \begin{cases} u_0 \frac{1 - q^{n+1}}{1 - q} & \text{si } q \neq 1\\ (n+1)u_0 & \text{si } q = 1. \end{cases}$$

Démonstration. Soient $(p, n) \in \mathbb{N}^2$ avec $p \leq n$.

- Si q = 1, alors $\sum_{k=p}^{n} u_k = \sum_{k=p}^{n} u_0 = (n-p+1)u_0$.
- Si $q \neq 1$, on a

$$\sum_{k=n}^{n} u_k = \sum_{k=n}^{n} u_0 \times q^k = u_0 \sum_{k=n}^{n} q^k = u_0 \times q^p \frac{1 - q^{n-p+1}}{1 - q} = u_p \frac{1 - q^{n-p+1}}{1 - q}.$$

Remarque 29. Si $q \neq 1$, on retient cette formule sous la forme

$$\sum_{k=p}^{n} u_k = (\text{premier terme}) \times \frac{1 - q^{(\text{nombre de termes})}}{1 - q}.$$

Exemple 25. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de premier terme $u_0=3$ et de raison q=-2. Alors

$$\sum_{k=7}^{21} u_k = u_7 \frac{1 - (-2)^{21 - 7 + 1}}{1 - (-2)} = 3 \times (-2)^7 \frac{1 - (-2)^{15}}{3} = -128(2^{15} + 1).$$

Année 2025-2026 26 / 33 Alex Panetta

Suites arithmético-géométriques 11.2.3

Définition 13: Suites arithmético-géométriques

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

La suite $(u_n)_{n\in\mathbb{N}}$ est dite arithmético-géométrique s'il existe $(a,b)\in\mathbb{R}^2$ tels que

$$\forall n \in \mathbb{N}, u_{n+1} = au_n + b.$$

Remarque 30. • Si a = 0, la suite $(u_n)_{n \in \mathbb{N}}$ est stationnaire et pour tout $n \ge 1$, $u_n = b$.

- Si a = 1, la suite $(u_n)_{n \in \mathbb{N}}$ est arithmétique de raison b.
- Si b = 0, la suite $(u_n)_{n \in \mathbb{N}}$ est géométrique de raison a.
- Supposons que $a \neq 1$. Si la suite $(u_n)_{n \in \mathbb{N}}$ converge vers $l \in \mathbb{R}$, alors on a également $\lim_{n\to+\infty}u_{n+1}=l$ donc en passant à la limite dans la relation $u_{n+1}=au_n+b$, on obtient l=al+b

d'où $l = \frac{b}{1-a}$. Ceci légitime la proposition suivante, qui va servir de méthode pour étudier les suites arithmético-géométriques en pratique.

Proposition 17

Soit $(a,b) \in \mathbb{R}^2$ avec $a \neq 1$. Soit $(u_n)_{n \in \mathbb{N}}$ une suite arithmético-géométrique qui vérifie pour tout $n \in \mathbb{N}$, $u_{n+1} = au_n + b$. Posons $l = \frac{b}{1-a}$.

Alors la suite $(v_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par $v_n=u_n-l$ est géométrique de raison

Ainsi, pour tout $n \in \mathbb{N}$, $u_n = a^n(u_0 - l) + l$.

En particulier, la suite $(u_n)_{n\in\mathbb{N}}$ est convergente si |a|<1 ou si $u_0=l$ et dans ce cas $\lim_{n \to +\infty} u_n = l = \frac{b}{1 - a}$

Démonstration. Montrons que la suite $(v_n)_{n\in\mathbb{N}}$ est géométrique de raison a. Soit $n \in \mathbb{N}$. On a

$$v_{n+1} = u_{n+1} - l = au_n + b - \frac{b}{1-a} = au_n - \frac{ab}{1-a} = a\left(u_n - \frac{b}{1-a}\right) = a(u_n - l) = av_n,$$

ce qui prouve que la suite $(v_n)_{n\in\mathbb{N}}$ est géométrique de raison a.

Ainsi, pour tout $n \in \mathbb{N}$, $v_n = v_0 \times a^n = (u_0 - l) \times a^n$.

Il s'ensuit que pour tout $n \in \mathbb{N}$, $u_n = v_n + l = a^n(u_0 - l) + l$.

D'après l'étude des suites géométriques, on en déduit que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente si et seulement si |a| < 1 (car a = 1 est impossible ici) et dans ce cas $\lim_{n \to +\infty} a^n = 0$ donc

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} a^n (u_0 - l) + l = l.$$

Exemple 26. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle de premier terme $u_0=2$ qui vérifie pour tout $n \in \mathbb{N}, u_{n+1} = \frac{1}{2}u_n - 3.$

Commençons par chercher l tel que $l = \frac{1}{2}l - 3 \Leftrightarrow \frac{l}{2} = -3 \Leftrightarrow l = -6$. Posons pour tout $n \in \mathbb{N}, v_n = u_n - l = u_n + 6$. On a alors pour tout $n \in \mathbb{N}$,

$$v_{n+1} = u_{n+1} + 6 = \frac{1}{2}u_n - 3 + 6 = \frac{1}{2}u_n + 3 = \frac{1}{2}(u_n + 6) = \frac{1}{2}v_n$$

27 / 33 Année 2025-2026 Alex Panetta

donc la suite $(v_n)_{n\in\mathbb{N}}$ est géométrique de raison $\frac{1}{2}$, ce qui implique que

$$\forall n \in \mathbb{N}, v_n = v_0 \times \left(\frac{1}{2}\right)^n = \frac{u_0 + 6}{2^n} = \frac{8}{2^n} = \frac{1}{2^{n-3}},$$

donc pour tout $n \in \mathbb{N}$, on a $u_n = v_n - 6 = \frac{1}{2^{n-3}} - 6$.

Puisque $\lim_{n\to+\infty}\frac{1}{2^{n-3}}=0$, on en déduit que $\lim_{n\to+\infty}u_n=-6$.

11.2.4 Suites récurrentes linéaires d'ordre 2

Définition 14: Suites récurrentes linéaires d'ordre 2

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. On dit que la suite $(u_n)_{n\in\mathbb{N}}$ vérifie une récurrence linéaire d'ordre 2 s'il existe $(a,b)\in\mathbb{R}^2$ tels que

$$\forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n.$$

Remarque 31. • Une suite récurrente linéaire d'ordre 2 est entièrement définie par ses deux premiers termes u_0 et u_1 et la relation de récurrence. En effet, la relation $u_{n+2} = au_{n+1} + bu_n$ ne permet de calculer u_2 pour n = 0 qu'à la condition que l'on connaisse u_0 et u_1 .

- Si b = 0, la suite $(u_n)_{n>1}$ est une suite géométrique de raison a.
- Si (a, b) = (0, 0), alors pour tout $n \ge 2, u_n = 0$.

Exemple 27. La suite de Fibonacci $(F_n)_{n\in\mathbb{N}}$ est définie par $F_0=0, F_1=1$ et pour tout $n\in\mathbb{N}, F_{n+2}=F_{n+1}+F_n$.

Théorème 8

Soit $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$. Soit $(u_n)_{n \in \mathbb{N}}$ une suite réelle telle que

$$\forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n.$$

On appelle équation caractéristique de cette suite récurrente l'équation

$$(E): r^2 - ar - b = 0$$

de discriminant $\Delta = a^2 + 4b$.

1. Si $\Delta > 0$, notons r_1 et r_2 les deux solutions réelles distinctes de (E). Alors il existe un unique couple $(\lambda, \mu) \in \mathbb{R}^2$ tel que

$$\forall n \in \mathbb{N}, u_n = \lambda r_1^n + \mu r_2^n.$$

2. Si $\Delta = 0$, notons r l'unique solution de (E). Alors il existe un unique couple $(\lambda, \mu) \in \mathbb{R}^2$ tel que

$$\forall n \in \mathbb{N}, u_n = (\lambda + \mu n)r^n.$$

3. Si $\Delta < 0$, alors il existe $(\rho, \theta) \in \mathbb{R}_+^* \times \mathbb{R}$ telles que les deux solutions complexes conjuguées de (E) soient $r_1 = \rho e^{i\theta}$ et $r_2 = \rho e^{-i\theta}$ (on a $\rho = |r_1|$ et $\theta \equiv \arg(r_1)[2\pi]$). Alors il existe un unique couple $(\lambda, \mu) \in \mathbb{R}^2$ tel que

$$\forall n \in \mathbb{N}, u_n = \rho^n(\lambda \cos(n\theta) + \mu \sin(n\theta)).$$

Remarque 32. Il est logique qu'une suite récurrente linéaire d'ordre deux dépende de deux paramètres λ et μ puisqu'elle est entièrement déterminée par ses deux premières valeurs u_0 et u_1 .

Démonstration.

- 1. Supposons que $\Delta > 0$. L'équation (E) admet alors deux racines réelles distinctes r_1 et r_2 . Ainsi, $r_1^2 = ar_1 + b$ et $r_2^2 = ar_2 + b$.
 - Montrons que pour tout $(\lambda, \mu) \in \mathbb{R}^2$, la suite $(v_n)_{n \in \mathbb{N}}$ définie pour tout $n \in \mathbb{N}$ par $v_n = \lambda r_1^n + \mu r_2^n$ vérifie la relation de récurrence $v_{n+2} = av_{n+1} + bv_n$ pour tout $n \in \mathbb{N}$. Soit $n \in \mathbb{N}$. On a

$$v_{n+2} = \lambda r_1^{n+2} + \mu r_2^{n+2}$$

$$= \lambda r_1^n \times r_1^2 + \mu r_2^n \times r_2^2$$

$$= \lambda r_1^n (ar_1 + b) + \mu r_2^n (ar_2 + b)$$

$$= a(\lambda r_1^{n+1} + \mu r_2^{n+1}) + b(\lambda r_1^n + \mu r_2^n)$$

$$= av_{n+1} + bv_n.$$

Ainsi, toutes les suites $(v_n)_{n\in\mathbb{N}}$ de la forme $v_n=\lambda r_1^n+\mu r_2^n$ où $(\lambda,\mu)\in\mathbb{R}^2$ vérifient la relation de récurrence $v_{n+2}=av_{n+1}+bv_n$ pour tout $n\in\mathbb{N}$.

• Montrons maintenant que la suite $(u_n)_{n\in\mathbb{N}}$ s'écrit nécessairement de cette forme. Cherchons $(\lambda,\mu)\in\mathbb{R}^2$ tels que pour tout $n\in\mathbb{N}, u_n=\lambda r_1^n+\mu r_2^n$. Pour n=0 et n=1, ceci implique que

$$\begin{cases} u_0 = \lambda + \mu \\ u_1 = \lambda r_1 + \mu r_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = \frac{r_2 u_0 - u_1}{r_2 - r_1} \\ \mu = \frac{r_1 u_0 - u_1}{r_1 - r_2}, \end{cases}$$

ce qui est possible car $r_1 \neq r_2$. Il y a donc un unique couple (λ, μ) qui convient. Pour ce λ et ce μ , les suites $(u_n)_{n\in\mathbb{N}}$ et $(\lambda r_1^n + \mu r_2^n)_{n\in\mathbb{N}}$ ont les mêmes deux premiers termes et vérifient la même relation de récurrence d'ordre 2: elles sont donc égales.

On a donc bien $u_n = \lambda r_1^n + \mu r_2^n$ pour tout $n \in \mathbb{N}$ où (λ, μ) est le couple trouvé précédemment.

- 2. Supposons que $\Delta=0$. L'équation (E) admet donc une racine double $r=\frac{a}{2}$, d'où a=2r.
 - Montrons que pour tout $(\lambda, \mu) \in \mathbb{R}^2$, la suite $(v_n)_{n \in \mathbb{N}}$ définie pour tout $n \in \mathbb{N}$ par $v_n = (\lambda + \mu n)r^n$ vérifie la relation de récurrence $v_{n+2} = av_{n+1} + bv_n$ pour tout $n \in \mathbb{N}$. Soit $n \in \mathbb{N}$. On a

$$av_{n+1} + bv_n = a(\lambda + \mu(n+1))r^{n+1} + b(\lambda + \mu n)r^n$$

$$= \lambda r^n (ar+b) + \mu r^n (anr+ar+bn)$$

$$= \lambda r^n \times r^2 + \mu r^n (n(ar+b) + 2r^2)$$

$$= \lambda r^{n+2} + \mu r^n (nr^2 + 2r^2)$$

$$= (\lambda + \mu(n+2))r^{n+2}$$

$$= v_{n+2}.$$

Ainsi, toutes les suites $(v_n)_{n\in\mathbb{N}}$ de la forme $v_n=(\lambda+\mu n)r^n$ où $(\lambda,\mu)\in\mathbb{R}^2$ vérifient la relation de récurrence $v_{n+2}=av_{n+1}+bv_n$ pour tout $n\in\mathbb{N}$.

• Montrons maintenant que la suite $(u_n)_{n\in\mathbb{N}}$ s'écrit nécessairement de cette forme. Cherchons $(\lambda,\mu)\in\mathbb{R}^2$ tels que pour tout $n\in\mathbb{N}, u_n=(\lambda+\mu n)r^n$. Pour n=0 et n=1, ceci implique que

$$\left\{ \begin{array}{lcl} u_0 & = & \lambda \\ u_1 & = & (\lambda + \mu)r \end{array} \right. \Leftrightarrow \left\{ \begin{array}{lcl} \lambda & = & u_0 \\ \mu & = & \frac{u_1 - u_0 r}{r}, \end{array} \right.$$

si $r \neq 0$.

Si $r = \frac{a}{2} = 0$, on a a = 0. Or $\Delta = a^2 + 4b = 0$ donc b = 0, d'où (a, b) = (0, 0) ce qui est contraire à notre hypothèse de départ. Donc on a toujours $r \neq 0$ d'où l'unicité du couple (λ, μ) .

On conclut comme dans le premier cas que pour tout $n \in \mathbb{N}$, $u_n = (\lambda + \mu n)r^n$.

- 3. Supposons que $\Delta < 0$. Alors l'équation (E) admet deux solutions complexes conjuguées $r_1 = \rho e^{i\theta}$ et $r_2 = \rho e^{-i\theta}$ avec $\rho = |r_1| \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$.
 - On vérifie comme dans le premier cas que pour tout $(\lambda, \mu) \in \mathbb{C}^2$, la suite $(v_n)_{n \in \mathbb{N}}$ définie pour tout $n \in \mathbb{N}$ par $v_n = \lambda r_1^n + \mu r_2^n$ vérifie la relation de récurrence $v_{n+2} = av_{n+1} + bv_n$. Mais c'est une suite à valeurs complexes. Or, on cherche l'expression de la suite $(u_n)_{n \in \mathbb{N}}$ qui est une suite réelle.

En prenant $(\lambda, \mu) = (\frac{1}{2}, \frac{1}{2})$, on trouve que pour tout $n \in \mathbb{N}$,

$$v_n = \frac{1}{2}\rho^n e^{in\theta} + \frac{1}{2}\rho^n e^{-in\theta} = \rho^n \left(\frac{e^{in\theta} + e^{-in\theta}}{2}\right) = \rho^n \cos(n\theta).$$

De même, en prenant $(\lambda, \mu) = (\frac{1}{2i}, -\frac{1}{2i})$, on trouve que pour tout $n \in \mathbb{N}$,

$$w_n = \frac{1}{2i}\rho^n e^{in\theta} - \frac{1}{2i}\rho^n e^{-in\theta} = \rho^n \left(\frac{e^{in\theta} - e^{-in\theta}}{2i}\right) = \rho^n \sin(n\theta).$$

On vient donc de trouver deux suites réelles $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ qui vérifient la même relation de récurrence d'ordre 2.

Ainsi, pour tout $(\lambda, \mu) \in \mathbb{R}^2$, on a

$$\lambda v_{n+2} + \mu w_{n+2} = \lambda (av_{n+1} + bv_n) + \mu (aw_{n+1} + bw_n) = a(\lambda v_{n+1} + \mu w_{n+1}) + b(\lambda v_n + \mu w_n)$$

donc la suite $(t_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par

$$t_n = \lambda v_n + \mu w_n = \rho^n (\lambda \cos(n\theta) + \mu \sin(n\theta))$$

vérifie la même relation de récurrence.

• Réciproquement, montrons qu'il existe un unique couple $(\lambda, \mu) \in \mathbb{R}^2$ tels que

$$\forall n \in \mathbb{N}, u_n = \rho^n(\lambda \cos(n\theta) + \mu \sin(n\theta)).$$

Pour n = 0 et n = 1, cette relation implique

$$\begin{cases} u_0 = \lambda \\ u_1 = \rho(\lambda\cos(\theta) + \mu\sin(\theta)) \end{cases}$$

Puisque les solutions ne sont pas réelles, nécessairement $\theta \not\equiv 0[\pi]$ donc $\sin(\theta) \not\equiv 0$ et on trouve $\mu = \frac{u_1 - \rho u_0 \cos(\theta)}{\rho \sin(\theta)}$.

Encore une fois, on a unicité du couple $(\lambda, \mu) \in \mathbb{R}^2$ et on conclut comme dans les cas précédents.

Exemple 28. • Calculons l'expression du terme général de la suite de Fibonacci $(F_n)_{n\in\mathbb{N}}$ pour tout $n\in\mathbb{N}$ définie par $F_0=0, F_1=1$ et par la relation de récurrence :

$$\forall n \in \mathbb{N}, F_{n+2} = F_{n+1} + F_n.$$

L'équation caractéristique associée est (E): $r^2 - r - 1 = 0$.

Année 2025-2026 30 / 33 Alex Panetta

Son discriminant est $\Delta = (-1)^2 - 4 \times 1 \times (-1) = 5 > 0$ et ses racines sont

$$r_1 = \frac{1+\sqrt{5}}{2}$$
 et $r_2 = \frac{1-\sqrt{5}}{2}$.

 $(r_1 \text{ est le nombre connu sous le nom de } \ll \text{ nombre d'or } \gg)$

Il existe donc $(\lambda, \mu) \in \mathbb{R}^2$ tel que pour tout $n \in \mathbb{N}$,

$$F_n = \lambda r_1^n + \mu r_2^n = \lambda \left(\frac{1+\sqrt{5}}{2}\right)^n + \mu \left(\frac{1-\sqrt{5}}{2}\right)^n.$$

Pour n=0 et n=1, on obtient le système suivant

$$\begin{cases} 0 = \lambda + \mu \\ 1 = \lambda \frac{1 + \sqrt{5}}{2} + \mu \frac{1 - \sqrt{5}}{2} \end{cases} \Leftrightarrow \begin{cases} \mu = -\lambda \\ 1 = \lambda \sqrt{5} \end{cases} \Leftrightarrow \begin{cases} \lambda = \frac{1}{\sqrt{5}} \\ \mu = -\frac{1}{\sqrt{5}} \end{cases}$$

Ainsi, on a

$$\forall n \in \mathbb{N}, F_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n.$$

• Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que $u_0=-1,u_1=2$ et

$$\forall n \in \mathbb{N}, u_{n+2} = -2u_{n+1} - u_n.$$

L'équation caractéristique associée est (E): $r^2 + 2r + 1 = 0 \Leftrightarrow (r+1)^2 = 0$ qui admet -1 comme racine double.

Il existe donc un couple $(\lambda, \mu) \in \mathbb{R}^2$ tel que

$$\forall n \in \mathbb{N}, u_n = (\lambda + \mu n)(-1)^n.$$

Pour n = 0 et n = 1, on obtient le système

$$\begin{cases} -1 &= \lambda \\ 2 &= -(\lambda + \mu) \end{cases}$$

d'où $(\lambda, \mu) = (-1, -1)$. Ainsi, on a

$$\forall n \in \mathbb{N}, u_n = (-1)^n (-1 - n) = (-1)^{n+1} (n+1).$$

• Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que $u_0=0, u_1=1$ et pour tout $n\in\mathbb{N}, u_{n+2}=-u_n$.

L'équation caractéristique associée est $r^2+1=0$. Les deux solutions complexes conjuguées sont $i=e^{i\frac{\pi}{2}}$ et $-i=e^{-i\frac{\pi}{2}}$ donc il existe $(\lambda,\mu)\in\mathbb{R}^2$ tel que

$$\forall n \in \mathbb{N}, u_n = \lambda \cos\left(n\frac{\pi}{2}\right) + \mu \sin\left(n\frac{\pi}{2}\right).$$

Pour n=0 et n=1, on obtient le système

$$\begin{cases} \lambda = 0 \\ \mu = 1 \end{cases}$$

donc pour tout $n \in \mathbb{N}, u_n = \sin\left(n\frac{\pi}{2}\right)$.

11.2.5 Etudes de suites du type $u_{n+1} = f(u_n)$

On s'intéresse dans cette section aux suites définies par récurrence, c'est à dire aux suites vérifiant une relation de la forme $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$ où $f : \mathcal{D} \longrightarrow \mathbb{R}$ est une application définie sur \mathcal{D} . Pour cela, il est donc nécessaire de fixer le premier terme de la suite $u_0 \in \mathcal{D}$ et de s'assurer que l'ensemble \mathcal{D} est stable par f, i.e. $f(\mathcal{D}) \subset \mathcal{D}$.

Ensuite, il peut être utile de déterminer la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$ en vue d'utiliser le théorème de la limite monotone.

Pour cela, on peut étudier le signe de $u_{n+1} - u_n = f(u_n) - u_n$, ce qui revient à étudier le signe de f(x) - x pour $x \in \mathcal{D}$.

Enfin, on a le théorème important suivant, qui sera démontré dans le chapitre « Limites et continuité ».

Théorème 9

Soit $\mathcal{D} \subset \mathbb{R}$. Soit $f : \mathcal{D} \longrightarrow \mathbb{R}$ une application continue. On suppose que $f(\mathcal{D}) \subset \mathcal{D}$. Soit $(u_n)_{n \in \mathbb{N}}$ une suite réelle définie par $u_0 \in \mathcal{D}$ et par $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$. On suppose que la suite $(u_n)_{n \in \mathbb{N}}$ converge vers une limite $l \in \mathcal{D}$.

Alors l est un point fixe de f, i.e.

$$l = f(l)$$
.

Remarque 33. Ce théorème signifie que les limites éventuelles d'une telle suite $(u_n)_{n\in\mathbb{N}}$ sont à chercher parmi les points fixes de f, c'est à dire les solutions de l'équation f(x) = x.

Exemple 29. Etudions la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0\in\mathbb{R}$ et $u_{n+1}=u_n(1+u_n)$.

On a bien une suite définie par récurrence de la forme $u_{n+1} = f(u_n)$ où $f: x \longmapsto x(1+x)$ est définie sur \mathbb{R} tout entier.

Cherchons les points fixes de f, c'est à dire résolvons l'équation f(x) = x. On a

$$f(x) = x \Leftrightarrow x(1+x) = x \Leftrightarrow x^2 = 0 \Leftrightarrow x = 0.$$

Ainsi, la seule limite possible de la suite $(u_n)_{n\in\mathbb{N}}$ est l=0.

Par ailleurs, on a pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n = u_n(1 + u_n) - u_n = u_n^2 \ge 0$ donc la suite $(u_n)_{n \in \mathbb{N}}$ est croissante.

Il y a maintenant plusieurs cas selon la valeur de u_0 :

- Si $u_0 > 0$, la suite $(u_n)_{n \in \mathbb{N}}$ est strictement croissante et on a pour tout $n \in \mathbb{N}$, $u_n > u_0 > 0$. La suite ne peut donc pas converger vers 0. Elle est donc croissante et non majorée, donc elle diverge vers $+\infty$.
- Si $u_0=0$, alors pour tout $n\in\mathbb{N}, u_n=0$ donc la suite est constante égale à 0 et on a $\lim_{n\to+\infty}u_n=0$.
- Si $-1 < u_0 < 0$, puisque pour tout $x \in]-1,0[,-1 < x < f(x) < 0$, l'intervalle]-1,0[est stable par f et on a pour tout $n \in \mathbb{N}, -1 < u_n \le u_{n+1} < 0$.

La suite $(u_n)_{n\in\mathbb{N}}$ est donc croissante et majorée. D'après le théorème de la limite monotone, elle est convergente.

La seule limite possible étant 0, on a $\lim_{n\to+\infty} u_n = 0$.

- Si $u_0 = -1$, on a $u_1 = 0$ et pour tout $n \ge 1$, $u_n = 0$ donc $\lim_{n \to +\infty} u_n = 0$.
- Si $u_0 < -1$, on a $u_1 = f(u_0) > 0$ et donc pour tout $n \ge 1, u_n > 0$ donc on trouve comme dans le premier cas, $\lim_{n \to +\infty} u_n = +\infty$.

On en conclut donc que

$$\lim_{n \to +\infty} u_n = \begin{cases} 0 & \text{si } -1 \le u_0 \le 0 \\ +\infty & \text{sinon.} \end{cases}$$

Remarque 34. La monotonie de f donne également des informations intéressantes sur la suite.

 \bullet Si f est croissante, alors la suite est monotone.

En effet, si $u_0 \le u_1$, alors $u_1 = f(u_0) \le f(u_1) = u_2$ et on en déduit aisément par récurrence que la suite est croissante.

En revanche, si $u_0 \ge u_1$, alors $u_1 = f(u_0) \ge f(u_1) = u_2$ et on en déduit aisément par récurrence que la suite est décroissante.

• Si f est décroissante, alors $f \circ f$ est croissante donc les suites $(u_{2n})_{n \in \mathbb{N}}$ et $(u_{2n+1})_{n \in \mathbb{N}}$ sont monotones.

Année 2025-2026 33 / 33 Alex Panetta