Corrigé de la liste d'exercices n°10

Arithmétique

Exercice 1.

1. On a $100 = 2^2 \times 5^2$.

Ainsi, l'ensemble des diviseurs positifs de 100 est $\{2^{\alpha}5^{\beta}, (\alpha, \beta) \in [0, 2]^2\}$. Il y en a donc 9 qui sont $\{1, 2, 4, 5, 10, 20, 25, 50, 100\}$.

- 2. On a $6000000 = 6 \times 10^6 = 2 \times 3 \times (2 \times 5)^6 = 2^7 \times 3 \times 5^6$. Le nombre 6000000 admet donc $(7+1) \times (1+1) \times (6+1) = 112$ diviseurs positifs.
- 3. On a

$$13! = 13 \times (2^2 \times 3) \times 11 \times (2 \times 5) \times (3^2) \times (2^3) \times 7 \times (2 \times 3) \times 5 \times 2^2 \times 3 \times 2 = 2^{10} \times 3^5 \times 5^2 \times 7 \times 11 \times 13$$

donc 13! admet $(10+1) \times (5+1) \times (2+1) \times (1+1) \times (1+1) \times (1+1) = 1584$ diviseurs positifs.

Le nombre total de diviseurs (positifs ou négatifs) de 13! est donc $1584 \times 2 = 3168$.

Exercice 2.

On cherche le nombre d'entiers $k \in \mathbb{N}$ tels que 101 < 7k < 1001, ce qui équivaut à

$$14 = \frac{98}{7} < \frac{101}{7} < k < \frac{1001}{7} = 143$$

donc $15 \leqslant k \leqslant 142$.

Il y a donc 142 - 15 + 1 = 128 tels entiers.

Exercice 3.

- 1. Vrai car dans ce cas a divise bu + cv pour tout $(u, v) \in \mathbb{Z}^2$.
- 2. Vrai pour la même raison.
- 3. Non, ceci signifie seulement que pgcd(a, b) divise 4. Par exemple, si a = b = 1, on a pgcd(a, b) = 1 et 2a + 2b = 4.
- 4. Vrai : supposons qu'il existe un nombre premier qui divise a et b^3 . Alors p divise $b \times b \times b$ donc p divise b, et a, ce qui est impossible car a et b sont premiers entre eux. Ainsi, le seul diviseur positif commun à a et à b^3 est 1 donc a et b^3 sont premiers entre eux.
- 5. Faux : un contre-exemple est a = 2, et b = c = 1.
- 6. Vrai : c'est le théorème de Bézout.
- 7. Vrai : les hypothèses impliquent que $|a| \le |b| \le |c| \le |a|$ d'où le résultat.
- 8. Vrai : c'est une conséquence du lemme de Gauss car 19 est un nombre premier.
- 9. Faux : si b = d = 1, ceci signifierait que tous les entiers sont pairs!
- 10. Vrai : par hypothèse, il existe $(k, l) \in \mathbb{Z}^2$ tels que c = ak et d = bl, donc cd = (ab)(kl).
- 11. Faux : un contre-exemple est a = b = 3.
- 12. Vrai car b et c divisent bc.
- 13. Vrai : on a vu en cours que si a divise b, alors $\operatorname{ppcm}(a,b) = |b|$. Réciproquement, si $\operatorname{ppcm}(a,b) = |b|$, alors b est un multiple de a donc a divise b.
- 14. Faux si $a = \pm 1$. Vrai dans les autres cas car on aurait alors $pgcd(a,b) = |a| \ge 2$.

- 15. Faux : si a = 4 et b = 6, alors pgcd(a, b) = 2 mais a ne divise pas b et b ne divise pas a.
- 16. Vrai : Montrons-le par contraposée, i.e. montrons que si b et c sont pairs, alors 4 divise bc. En effet, dans ce cas, il existe $(b',c') \in \mathbb{Z}^2$ tels que b=2b' et c=2c' donc bc=4b'c'.
- 17. Faux : un contre-exemple est a = c = 1 et b = 2.
- 18. Vrai : puisque 5 divise $b \times b$ et que 5 est premier, alos 5 divise b. Ainsi, il existe $k \in \mathbb{Z}$ tel que b = 5k donc $b^2 = 25k^2$.
- 19. Faux : un contre-exemple est b = 6.
- 20. Vrai : si $12 = 2^2 \times 3$ divise b^2 , alors 2 et 3 divisent b^2 . Puisque 2 et 3 sont premiers, on en déduit que 2 et 3 divisent b. Or, 2 et 3 sont premiers entre eux donc $2 \times 3 = 6$ divise b, ce qui implique que $6^2 = 36$ divise b^2 .
- 21. Faux : un contre-exemple est a = 7 et b = 13.

Exercice 4.

1. Effectuons l'algorithme d'Euclide.

$$9n + 15 = 2(4n + 7) + (n + 1)$$

$$4n + 7 = 4(n + 1) + 3$$

Ainsi pgcd(9n + 15, 4n + 7) divise 3 donc vaut 1 ou 3.

- Si 3 divise n + 1, alors pgcd(9n + 15, 4n + 7) = 3.
- Si 3 ne divise pas n + 1, alors pgcd(9n + 15, 4n + 7) = 1.
- 2. Supposons par l'absurde qu'il existe un diviseur commun premier p à n² et 2n + 1. Puisque p est premier et divise n², alors p divise n et 2n + 1. Ainsi, p divise n et 2n + 1 donc divise 2n + 1 2n = 1, ce qui est absurde pour un nombre premier. On en déduit que n² et 2n + 1 ne possèdent pas de facteur premier commun, ce qui implique que n² et 2n + 1 sont premiers entre eux.

Exercice 5.

- 1. On a $P(41)=41^2$ qui n'est pas un nombre premier donc P(n) n'est pas un nombre premier pour tout $n\in\mathbb{N}$.
- 2. Soit $n \in \mathbb{N}$.

On a les équivalences suivantes :

$$43 \, \text{divise} \, P(n) \Leftrightarrow \exists k \in \mathbb{Z}, 43k = n^2 - n + 41 \Leftrightarrow \exists k \in \mathbb{Z}, 43(k-1) = n^2 - n - 2 \Leftrightarrow 43 \, \text{divise} \, n^2 - n - 2.$$

Or, pour tout $n \in \mathbb{N}, n^2 - n - 2 = (n+1)(n-2)$.

Puisque 43 est premier, on a l'équivalence

$$43 \text{ divise } n^2 - n - 2 \Leftrightarrow 43 \text{ divise } n + 1 \text{ ou } 43 \text{ divise } n - 2$$

donc finalement

$$43 \text{ divise } P(n) \Leftrightarrow \exists k \in \mathbb{Z}, n = 43k - 1 \text{ ou } n = 43k + 2.$$

ce qui assure qu'il existe une infinité d'entiers n tels que 43 divise P(n).

Exercice 6. Soit n un entier naturel.

1. Montrons que n(n+1)(n+2) est divisible par 6.

Il y a forcément un nombre pair parmi n, n + 1 ou n + 2 donc 2 divise n(n + 1)(n + 2). De même, un des trois nombres n, n + 1 ou n + 2 est forcément un multiple de 3 donc 3 divise n(n + 1)(n + 2).

Puisque 2 et 3 sont premiers entre eux, on en déduit que $2 \times 3 = 6$ divise n(n+1)(n+2).

2. Montrons que n(n+1)(n+2)(n+3) est divisible par 24.

Comme dans la question précédente, (au moins) un des quatre nombres n, n + 1, n + 2 ou n + 3 est divisible par 3 donc 3 divise n(n + 1)(n + 2)(n + 3).

De plus, parmi ces quatre nombres : deux sont nécessairement pairs, et un des deux est même un multiple de 4. Ainsi, l'un des quatre est divisible par 2, et un autre est divisible par 4, donc $8 = 4 \times 2$ divise n(n+1)(n+2)(n+3).

Puisque 3 et 8 sont premiers entre eux, on en conclut que $24 = 3 \times 8$ divise n(n+1)(n+2)(n+3).

Exercice 7.

1. Puisque $c \operatorname{pgcd}(a, b)$ divise ca et cb, on en déduit que $c \operatorname{pgcd}(a, b)$ divise $\operatorname{pgcd}(ca, cb)$. Réciproquement, puisque c divise ca et cb, alors c divise $\operatorname{pgcd}(ca, cb)$.

Par ailleurs, puisque pgcd(ca, cb) divise ca et cb, on en déduit que $\frac{pgcd(ca, cb)}{c}$ divise a et b, donc divise pgcd(a, b). On en déduit que pgcd(ca, cb) divise cpgcd(a, b). Finalement, cpgcd(a, b) divise pgcd(ca, cb) et réciproquement, donc

$$|c|\operatorname{pgcd}(a,b) = \operatorname{pgcd}(ca,cb).$$

- 2. Si |a| = |b| = 1, le résultat est évident.
 - Supposons que $|a| \ge 2$ ou $|b| \ge 2$.

Soient (p_1, \ldots, p_r) l'ensemble des nombres premiers divisant a ou b.

On a alors
$$a = \prod_{i=1}^r p_i^{v_{p_i}(a)}$$
, $b = \prod_{i=1}^r p_i^{v_{p_i}(b)}$, $a^2 = \prod_{i=1}^r p_i^{2v_{p_i}(a)}$ et $b^2 = \prod_{i=1}^r p_i^{2v_{p_i}(b)}$.

Il s'ensuit que

$$\operatorname{pgcd}(a^2, b^2) = \prod_{i=1}^r p_i^{\min(2v_{p_i}(a), 2v_{p_i}(b))} = \prod_{i=1}^r p_i^{2\min(v_{p_i}(a), 2v_{p_i}(b))} = \left(\prod_{i=1}^r p_i^{\min(v_{p_i}(a), v_{p_i}(b))}\right)^2 = \operatorname{pgcd}(a, b)^2.$$

- 3. Soit d un diviseur positif commun à b et à c. Puisque c divise a, alors d est un diviseur positif commun à a et à b. Or, $\operatorname{pgcd}(a,b)=1$, donc on a nécessairement d=1, ce qui prouve que $\operatorname{pgcd}(c,b)=1$.
- 4. Supposons que $\operatorname{pgcd}(a,bc)=1$. D'après le théorème de Bézout, il existe $(u,v)\in\mathbb{Z}^2$ tels que

$$au + (bc)v = 1.$$

En posant $v' = cv \in \mathbb{Z}^2$, on a au + bv' = 1, ce qui implique d'après le théorème de Bézout que $\operatorname{pgcd}(a, b) = 1$.

De même, en posant $v'' = bv \in \mathbb{Z}^2$, on a au + cv'' = 1, ce qui implique d'après le théorème de Bézout que $\operatorname{pgcd}(a, c) = 1$.

• Supposons que pgcd(a, b) = 1 et pgcd(a, c) = 1.

D'après le théorème de Bézout, il existe $(u, v, k, l) \in \mathbb{Z}^4$ tels que

$$au + bv = 1$$
 et $ak + cl = 1$.

Si on multiplie ces deux identités de Bézout, on obtient

$$a\underbrace{(aku + ucl + kbv)}_{\in \mathbb{Z}} + bc\underbrace{(lv)}_{\in \mathbb{Z}} = 1$$

et on déduit du théorème de Bézout que pgcd(a, bc) = 1.

- 5. Supposons que pgcd(a, b) = 1.
 - On sait que $\operatorname{pgcd}(a+b,a-b)$ divise (a+b)+(a-b)=2a et (a+b)-(a-b)=2b donc $\operatorname{pgcd}(a+b,a-b)$ divise $\operatorname{pgcd}(2a,2b)=2\operatorname{pgcd}(a,b)=2$, ce qui implique que $\operatorname{pgcd}(a+b,a-b)$ est égal à 1 ou à 2.
 - On sait que $\operatorname{pgcd}(a+b,ab)$ divise $a(a+b)-ab=a^2$ et $b(a+b)-ab=b^2$ donc $\operatorname{pgcd}(a+b,ab)$ divise $\operatorname{pgcd}(a^2,b^2)=\operatorname{pgcd}(a,b)^2=1$, ce qui implique que $\operatorname{pgcd}(a+b,ab)=1$.

Exercice 8.

• Supposons que n est premier. Puisque $n \ge 10$, il est premier avec tous les nombres premiers inférieurs à 10, donc il est premier avec leur produit (d'après la question 4 de l'exercice précédent).

Ainsi, $\operatorname{pgcd}(n, 2 \times 3 \times 5 \times 7) = \operatorname{pgcd}(n, 210) = 1$.

• Supposons que pgcd(n, 210) = 1. Puisque $210 = 2 \times 3 \times 5 \times 7$, on en déduit que le plus petit nombre premier qui puisse apparaître dans la décomposition en facteurs premiers de n est 11. Or, pour tous nombres premiers p et q supérieurs ou égaux à 11, on a pq > 100 donc il ne peut y avoir qu'un nombre premier dans la décomposition en facteurs premiers de n, et celui-ci est nécessairement élevée à la puissance 1, donc n est premier.

Exercice 9.

- 1. On a $637 = 7^2 \times 13$ et $595 = 5 \times 7 \times 17$ donc pgcd(637, 595) = 7.
- 2. En divisant par 7, on obtient

$$(E)$$
: $637x + 595y = 91 \Leftrightarrow 91x + 85y = 13.$

Trouvons une relation de Bézout entre 91 et 85. Pour cela, effectuons tout d'abord l'algorithme d'Euclide :

$$91 = 85 \times 1 + 6$$

 $85 = 6 \times 14 + 1$

puis remontons l'algorithme d'Euclide:

$$1 = 85 - 6 \times 14$$
$$= 85 - (91 - 85) \times 14$$
$$= 85 \times 15 - 91 \times 14$$

donc en multipliant par 13, on obtient $91 \times (-182) + 85 \times 195 = 13$.

Ainsi, le couple $(x_0, y_0) = (-182, 195)$ est une solution particulière de (E).

Soit (x, y) une solution de (E). On a alors

$$91x + 85y = 91x_0 + 85y_0 \Leftrightarrow 91(x - x_0) = 85(y_0 - y).$$

Ainsi, 85 divise $91(x-x_0)$. Or, 91 et 85 sont premiers entre eux donc d'après le lemme de Gauss, on en déduit que 85 divise $x-x_0$, i.e. il existe $k \in \mathbb{Z}$ tel que $x-x_0=85k$, ou encore $x=x_0+85k$.

En réinjectant dans $91(x-x_0)=85(y_0-y)$, on obtient $y_0-y=91k$ ou encore $y=y_0-91k$. On en déduit que l'ensemble des solutions est inclus dans $\{(x_0+85k,y_0-91k), k\in\mathbb{Z}\}$. Réciproquement, s'il existe $k\in\mathbb{Z}$ tel que $(x,y)=(x_0+85k,y_0-91k)$, on a alors

$$91x + 85y = 91x_0 + 91 \times 85k + 85y_0 - 85 \times 91k = 91x_0 + 85y_0 = 13.$$

Finalement, l'ensemble des solutions de (E) est

$$\{(-182 + 85k, 195 - 91k), k \in \mathbb{Z}\}.$$

3. Puisque pgcd(637,595) = 7, alors pour tout $(x,y) \in \mathbb{Z}^2$, 7 divise 637x + 595y. Or, 7 ne divise pas 143 donc cette équation n'admet pas de solution.

Exercice 10.

⊳1ère méthode

• Soit $(a, b) \in \mathbb{N}^2$ tels que $\operatorname{pgcd}(a, b) = 12$ et $\operatorname{ppcm}(a, b) = 480$.

Posons $(a',b') \in \mathbb{N}^2$ tels que a=12a' et b=12b'. Alors a' et b' sont premiers entre eux donc $\operatorname{ppcm}(a',b')=a'b'$.

On a alors 480 = ppcm(a, b) = ppcm(12a', 12, b') = 12ppcm(a', b') = 12a'b' donc

$$a'b' = \frac{480}{12} = 40.$$

On cherche donc des couples (a', b') d'entiers naturels premiers entre eux tels que a'b' = 40. Les couples possibles sont

$$(a', b') \in \{(1, 40), (5, 8), (8, 5), (40, 1)\}$$

donc

$$(a,b) = (12a', 12b') \in \{(12,480), (60,96), (96,60), (480,12)\}.$$

• Réciproquement, on vérifie que tous ces couples conviennent donc les couples cherchés sont

$$\{(12,480),(60,96),(96,60),(480,12)\}.$$

⊳2ème méthode (Eloi)

On a pgcd $(a,b) = 12 = 2^2 \times 3$ et ppcm $(a,b) = 480 = 2^5 \times 3 \times 5$ donc les couples possibles sont

$$(a,b) \in \left\{ (2^2 \times 3 \times 5, 2^5 \times 3), (2^5 \times 3, 2^2 \times 3 \times 5), (2^5 \times 3 \times 5, 2^2 \times 3), (2^2 \times 3, 2^5 \times 3 \times 5) \right\}$$

donc

$$(a,b) \in \{(60,96), (96,60), (480,12), (12,480)\}.$$

Exercice 11. Considérons pour tout $k \in [2, n+1], a_k = (n+1)! + k$.

Pour tout $k \in [2, n+1]$, k divise (n+1)! (puisque $k \le n+1$) et k divise k donc k divise $(n+1)! + k = a_k$. Or, $1 < k < a_k$ donc k est un diviseur strict de a_k , ce qui assure que a_k n'est pas premier.

Ainsi, $a_2, a_3, \ldots, a_n, a_{n+1}$ sont n entiers consécutifs qui ne sont pas premiers.

Exercice 12.

Par hypothèse, il existe un entier $n \in \mathbb{N}$ tel que $11p + 1 = n^2$, i.e.

$$11p = n^2 - 1 = (n-1)(n+1).$$

Puisque 11 est premier et que 11 divise (n-1)(n+1), on en déduit que 11 divise n-1 ou 11 divise n+1. De même, puisque p est premier, p divise (n-1) ou p divise n+1. De plus, on a forcément $p \neq 11$ puisque $11^2 + 1 = 122$ n'est pas un carré.

- Si 11 et p divisent n-1, puisque 11 et p sont premiers entre eux, on en déduit que 11p divise n-1 donc 11p=n-1 et n+1=1, ce qui donnerait n=0 et 11p=-1, ce qui est absurde.
- Si Si 11 et p divisent n+1, puisque 11 et p sont premiers entre eux, on en déduit que 11p divise n+1 donc 11p=n+1 et n-1=1, ce qui donnerait n=2 et 11p=2, ce qui est impossible.
- Si 11 divise n+1 et p divise n-1, puisque 11p = (n-1)(n+1), on a nécessairement 11 = n+1 et p = n-1 donc n = 10 et p = 9, ce qui est impossible puisque p est premier.
- Si 11 divise n-1 et p divise n+1, puisque 11p=(n-1)(n+1), on a nécessairement 11=n-1 et p=n+1 donc n=12 et p=13, qui est bien un nombre premier. L'entier cherché est donc p=13.

Exercice 13. • Si un des entiers a ou b est égal à 1, le résultat est évident.

 \bullet Supposons que a et b sont tous deux supérieurs ou égaux à 2.

Décomposons a et b en facteurs premiers. Puisque a et b sont premiers entre eux, ils n'ont aucun facteur premier en commun. Il existe donc des entiers $(r,n) \in \mathbb{N}^2$ avec $r \leq n$, des nombres premiers $p_1, \ldots, p_r, p_{r+1}, \ldots, p_n$ distincts deux à deux et des entiers $\alpha_1, \ldots, \alpha_r, \alpha_{r+1}, \ldots, \alpha_n$ non nuls tels que

$$a = \prod_{i=1}^r p_i^{\alpha_i}$$
 et $b = \prod_{i=r+1}^n p_i^{\alpha_i}$.

Par hypothèse, on a alors

$$c^{2} = ab = \prod_{i=1}^{r} p_{i}^{\alpha_{i}} \prod_{i=r+1}^{n} p_{i}^{\alpha_{i}} = \prod_{i=1}^{n} p_{i}^{\alpha_{i}}.$$

Ainsi, les diviseurs premiers de c sont p_1, \ldots, p_n et on a $c = \prod_{i=1}^n p_i^{v_{p_i}(c)}$ d'où

$$c^2 = \prod_{i=1}^n p_i^{2v_{p_i}(c)}.$$

Par unicité de la décomposition en facteurs premiers, on en déduit que pour tout $i \in [1, n], \alpha_i = 2v_{p_i}(c)$.

Ainsi,
$$a = \prod_{i=1}^r p_i^{\alpha_i} = \prod_{i=1}^r p_i^{2v_{p_i}(c)} = \left(\prod_{i=1}^r p_i^{v_{p_i}(c)}\right)^2$$
 est un carré, et il en est de même pour b .

Exercice 14.

- 1. On peut prendre par exemple u = 4 et v = -11.
- 2. On a $c^{25} = (a^u b^v)^{25} = a^{25u} b^{25v} = a^{25} u (b^{25})^v = a^{25u} (a^9)^v = a^{25u+9v} = a$. De même, $c^9 = (a^u b^v)^9 = a^{9u} b^{9v} = (a^9)^u b^{9v} = (b^{25})^u b^{9v} = b^{25u+9v} = b$.
- 3. Soit $x \in \mathbb{Q}$. Il existe des entiers $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ avec p et q premiers entre eux tels que $x = \frac{p}{q}$.

Par hypothèse, il existe $(k, l) \in \mathbb{N}^* \times \mathbb{Z}$ tel que $x^k = l$, i.e. $\frac{p^k}{q^k} = l$, ou encore $p^k = lq^k$.

Ainsi,
$$q$$
 divise $p^k = \underbrace{p \times \cdots \times p}_{k \text{ fois}}$.

Puisque p et q sont premiers entre eux, d'après le lemme de Gauss, on en déduit que q divise p, mais puisque p et q sont premiers entre eux, ceci n'est possible que si q=1. Ainsi, $x=p\in\mathbb{Z}$.

- 4. On a $c = a^u b^v = a^4 b^{-11} = \frac{a^4}{b^{11}} \in \mathbb{Q}$. D'après la question $2, c^9 = b \in \mathbb{Z}$. D'après la question précédente, ceci implique que $c \in \mathbb{Z}$. Enfin, puisque a et b sont strictement positifs, il en découle que $c \in \mathbb{N}^*$.
- 5. Si m et n sont premiers entre eux, d'après le théorème de Bézout, il existe $(u, v) \in \mathbb{Z}^2$ tels que mu + nv = 1. En reprenant les questions précédentes en remplaçant 9 par m et 25 par n, on aboutit à la même conclusion.

Exercice 15.

- 1. Soit $k \in [1, \dots, p-1]$. On a $\binom{p}{k} = \frac{p!}{k!(p-k)!} = \frac{p(p-1)\dots(p-k+1)}{k!}$ avec $p-k+1 \in [2, p]$ donc $p(p-1)\dots(p-k+1) = k!\binom{p}{k}$. Ainsi, p divise $k!\binom{p}{k}$. Or, puisque $1 \le k \le p-1$, p est premier avec k! donc d'après le lemme de Gauss, p divise $\binom{p}{k}$.
- 2. Soient $(a, b) \in \mathbb{Z}^2$. D'après la formule du binôme de Newton,

$$(a+b)^p = \sum_{k=0}^p \binom{p}{k} a^k b^{p-k} = a^p + b^p + \sum_{k=1}^{p-1} \binom{p}{k} a^k b^{p-k}$$

donc
$$(a+b)^p - a^p - b^p = \sum_{k=1}^{p-1} \binom{p}{k} a^k b^{p-k}$$
.

Or, d'après la question précédente, pour tout $k \in [1, p-1], p$ divise $\binom{p}{k}$ donc p divise $\binom{p}{k}a^kb^{p-k}$, ce qui prouve que p divise $(a+b)^p-a^p-b^p$.

- 3. \triangleright Montrons par récurrence que pour tout $n \in \mathbb{N}$, p divise $n^p n$.
 - •Initialisation : Si $n = 0, n^p n = 0$ et p divise 0 donc la propriété est vraie au rang n = 0.
 - •**Hérédité :** Soit $n \in \mathbb{N}$ fixé. On suppose que p divise $n^p n$. Montrons que p divise $(n+1)^p (n+1)$.

On a
$$(n+1)^p - (n+1) = ((n+1)^p - n^p - 1^p) + (n^p - n)$$
.

D'après la question précédente, p divise $(n+1)^p - n^p - 1^p$ et par hypothèse de récurrence, p divise $n^p - n$ donc p divise $((n+1)^p - n^p - 1^p) + (n^p - n) = (n+1)^p - (n+1)$, ce qui prouve la propriété au rang n+1.

D'après le principe de récurrence, on en conclut que pour tout $n \in \mathbb{N}$, p divise $n^p - n$. \triangleright Etendons ce résultat aux entiers négatifs.

Soit $n \in \mathbb{Z}$, avec n < 0. Alors $-n \in \mathbb{N}^*$.

D'après la récurrence, p divise $(-n)^p - (-n) = (-1)^p n^p + n$.

- Si p = 2, ceci signifie que 2 divise $n^2 + n$. Or, 2 divise -2n donc 2 divise $(n^2 + n) 2n = n^2 n$, ce qui est la propriété voulue.
- Si p est impair, ceci signifie que p divise $-n^p+n$ donc p divise n^p-n , ce qui est la propriété voulue.

Dans tous les cas, pour tout $n \in \mathbb{Z}$, p divise $n^p - n$.

4. Soit $n \in \mathbb{Z}$ un entier non divisible par p. D'après la question précédente, p divise $n^p - n = n(n^{p-1} - 1)$.

Puisque p ne divise pas n, p et n sont premiers entre eux et on déduit du lemme de Gauss que p divise $n^{p-1} - 1$.

Exercice 16. Tout d'abord, la remarque de l'énoncé est vraie d'après la décomposition en facteurs premiers d'un entier naturel.

Soit $l \in [1, 2n]$. On sait qu'il existe $(k, m) \in \mathbb{N}^2$ tel que $l = 2^k (2m + 1)$.

On a nécessairement $1 \leq 2m+1 \leq 2n-1$, i.e. $0 \leq 2m \leq 2n-2$ d'où $0 \leq m \leq n-1$.

Ainsi, il existe au maximum n choix possibles pour la valeur de m dans la décomposition d'un entier dans [1, 2n] sous la forme $2^k(2m+1)$.

Puisque $\operatorname{Card}(A) = n+1$, il existe nécessairement deux entiers a et b dans [1, n+1] qui s'écrivent avec le même m sous la forme $a = 2^k(2m+1)$ et $b = 2^{k'}(2m+1)$, où $(k, k', m) \in \mathbb{N}^3$ et $k \leq k'$ (quitte à échanger a et b).

Puisque $k \leq k'$, on en déduit que a divise b.