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Exercice 1.

1. • On a lim
x→0

(x2 + cos(x)− 14) sin(e−x) = −13 sin(1) < 0.

Par ailleurs, on sait que (ln(x)+
√
x) ln(1+x) ∼

0
(ln(x)+

√
x)x = x ln(x)+x

√
x −→

x−→0+
0−

car au voisinage de 0+, (ln(x) +
√
x) ln(1 + x) est de signe négatif.

Par quotient, on en déduit que lim
x→0+

f(x) = +∞.

• Puisque lim
x→+∞

e−x = 0 et sin(x) ∼
0
x, on en déduit que sin(e−x) ∼

+∞
e−x.

Ainsi, f(x) ∼
+∞

x2e−x

√
x ln(1 + x)

donc par croissances comparées, on en déduit que lim
x→+∞

f(x) =

0+.

2. • On a sin(x2) ∼
0
x2 donc x3 + sin(x2) = x2

(
x+

sin(x2)

x2

)
∼
0
x2 et ex

3 − 1 ∼
0
x3

g(x) ∼
0

x4
√
14

x3(x+ x2 ln(x))
∼
0

√
14x4

x4
=

√
14

donc lim
x→0

g(x) =
√
14.

• En +∞, on a

g(x) ∼
+∞

x6
√
x

ex3x2 ln(x)
−→

x−→+∞
0+

par croissances comparées.

Exercice 2.

1. En multipliant par la quantité conjuguée, on obtient

(
√
x2 + 3x− 1−

√
x2 + x)(

√
x2 + 3x− 1 +

√
x2 + x)√

x2 + 3x− 1 +
√
x2 + x

=
x2 + 3x− 1− (x2 + x)√
x2 + 3x− 1 +

√
x2 + x

=
2x− 1√

x2 + 3x− 1 +
√
x2 + x

=
2x− 1

x
(√

1 + 3
x
− 1

x2 +
√

1 + 1
x

)
∼
+∞

2x

2x

donc lim
x→+∞

√
x2 + 3x− 1−

√
x2 + x = 1.

2. Au voisinage de 0, on a

(cos (x))
1

sin2(x) = exp

(
1

sin2(x)
ln(cos(x))

)
.

Or, ln(cos(x)) = ln(1 + (cos(x)− 1)) avec lim
x→0

cos(x)− 1 = 0 donc

ln(cos(x)) ∼
0
cos(x)− 1 ∼

0
−x2

2
.



Par ailleurs, sin2(x) ∼
0
x2 donc

ln(cos(x))

sin2(x)
∼
0
−1

2
.

Finalement, lim
x→0

(cos (x))
1

sin2(x) = e−
1
2 .

3. Par croissances comparées, on a lim
x→0

x ln(x) = 0 donc sin(x ln(x)) ∼
0
x ln(x) d’où

sin(x ln(x))

x
∼
0
ln(x).

Or, lim
x→0

ln(x) = −∞ donc lim
x→0

sin(x ln(x))

x
= −∞.

4. On a
−x2 + x+ 6

x2 − 6x+ 9
=

(x− 3)(−x− 2)

(x− 3)2
=

−x− 2

x− 3
.

Or, lim
x→3

−x− 2 = −5, lim
x→3−

x− 3 = 0− et lim
x→3+

x− 3 = 0+ donc lim
x→3−

−x2 + x+ 6

x2 − 6x+ 9
= +∞

et lim
x→3+

−x2 + x+ 6

x2 − 6x+ 9
= −∞.

5. Puisque lim
x→0

sin(x) = 0 et cos(x)− 1 ∼
0
−x2

2
, on en déduit que

cos(sin(x))− 1 ∼
0
−sin2(x)

2
∼
0
−x2

2
.

Par ailleurs, tan3(x)− 2 sin2(x) = sin2(x)

(
sin(x)

cos3(x)
− 2

)
∼
0
x2

(
sin(x)

cos3(x)
− 2

)
donc

cos(sin(x))− 1

tan3(x)− 2 sin2(x)
∼
0

−x2

2

x2

(
sin(x)

cos3(x)
− 2

) = − 1

2

(
sin(x)

cos3(x)
− 2

) −→
x−→0

1

4
.

6. Puisque
1

x
−→

x→+∞
0, on a sin

(
1

x

)
∼
+∞

1

x
donc ⌊x⌋ sin

(
1

x

)
∼
+∞

⌊x⌋
x

.

Or, pour tout x > 0, on a x− 1 < ⌊x⌋ ⩽ x donc
x− 1

x
<

⌊x⌋
x

⩽ 1. On en déduit d’après

le théorème des gendarmes que lim
x→+∞

⌊x⌋
x

= 1 donc lim
x→+∞

⌊x⌋ sin
(
1

x

)
= 1.

7. Montrons que cette limite n’existe pas. Supposons par l’absurde qu’il existe l ∈ R∪{±∞}
tel que lim

x→+∞
x sin(x) = l.

Soit un = nπ pour tout n ∈ N. Puisque lim
n→+∞

un = +∞, on en déduit par composition

que lim
n→+∞

nπ sin(nπ) = l. Or, pour tout n ∈ N, nπ sin(nπ) = 0, donc l = 0.

Soit vn = 2nπ + π
2
pour tout n ∈ N. Puisque lim

n→+∞
vn = +∞, on en déduit par compo-

sition que lim
n→+∞

(2nπ +
π

2
) sin(2nπ +

π

2
) = l = 0.

Or, pour tout n ∈ N, (2nπ + π
2
) sin(2nπ + π

2
) = 2nπ + π

2
−→

n−→+∞
+∞.

Donc l = 0 = +∞, ce qui est absurde.

Ainsi, la fonction x 7→ x sin(x) n’admet pas de limite en +∞.

8. On a pour tout x > 0, (
x+ 2

x

)2x

= e2x ln(1+ 2
x
).



Puisque lim
x→+∞

2

x
= 0, on en déduit que ln

(
1 + 2

x

)
∼
+∞

2
x
donc 2x ln

(
1 + 2

x

)
∼
+∞

4, i.e.

lim
x→+∞

2x ln

(
1 +

2

x

)
= 4, puis par composition de limites, lim

→+∞
e2x ln(1+ 2

x) = e4.

Exercice 3. Supposons que f soit croissante (la preuve est analogue dans le cas où f est
décroissante).
Soit x0 ∈ I.
La fonction f est croissante sur ]a, x0[ et par croissance de f, pour tout x ∈]a, x0[, f(x) ⩽ f(x0),
donc f est majorée sur ]a, x0[. D’après le théorème de la limite monotone, f admet une limite
finie en x−

0 et lim
x→x−

0

f(x) = sup
x∈]a,x0[

f(x).

De même, f est croissante sur ]x0, b[ et par croissance de f, pour tout x ∈]x0, b[, f(x) ⩾ f(x0),
donc f est minorée su ]x0, b[. D’après le théorème de la limite monotone, f admet une limite
finie en x+

0 et lim
x→x+

0

f(x) = inf
x∈]x0,b[

f(x).

Exercice 4.

1. On sait que 1− cos(x) ∼
0

x2

2
et lim

x→0
2πx = 0 donc par composition, on obtient

1− cos(2πx) ∼
0

(2πx)2

2
= 2π2x2

donc
1− cos(2πx)

x2 ln(x)
∼
0

2π2

ln(x)
−→

x→−∞
0− donc on peut prolonger f par continuité en 0 en

posant f(0) = 0.

2. Posons x = 1 + h. Quand x tend vers 1, on a h = x− 1 tend vers 0 et

f(x) = f(1 + h) =
1− cos(2π(1 + h))

(1 + h)2 ln(1 + h)
=

1− cos(2πh+ 2π)

(1 + h)2 ln(1 + h)
=

1− cos(2πh)

(1 + h)2 ln(1 + h)
.

On a déjà vu en question précédente que 1 − cos(2πh) ∼
0
2π2h2 et par ailleurs, on sait

que ln(1 + h) ∼
0
h donc

f(1 + h) ∼
0

2π2h

(1 + h)2

donc lim
x→1

f(x) = lim
h→0

f(1+h) = lim
h→0

2π2h

(1 + h)2
= 0 donc on peut prolonger f par continuité

en 1 en posant f(1) = 0.

3. Puisque lim
x→0

x2 = 0 et sin(x) ∼
0
x, on a par composition sin(x2) ∼

0
x2 donc

g(x) ∼
0

x2

√
x+ 4− 2

=
x2(

√
x+ 4 + 2)

x
= x(

√
x+ 4 + 2) −→

x→0
= 0.

Ainsi, on peut prolonger g par continuité en 0 en posant g(0) = 0.

Exercice 5.

1. La fonction f est continue sur R∗
+\{1} comme produit et quotient de fonctions continues

sur R∗
+ \ {1}, le dénominateur ne s’y annulant pas.

Calculons lim
x→1

f(x). On sait que ln(x) ∼
1
x−1 (car ln(1+x) ∼

0
x) donc f(x) ∼

1

x+ 2

x
∼
1
3.

Ainsi, lim
x→1

f(x) = 3 = f(1), ce qui montre que f est continue en 1.

Finalement, f est continue sur R∗
+.



2. La fonction x 7→ sin(πx) est continue sur R comme composée de fonctions continues sur
R et la fonction x 7→ ⌊x⌋ est continue sur R \ Z donc g est continue sur R \ Z comme
produit de fonctions continues sur R \ Z.
Soit n ∈ Z. On a lim

x→n
sin(πx) = sin(nπ) = 0 donc lim

x→n−
⌊x⌋ sin(πx) = (n− 1)× 0 = 0 et

lim
x→n+

⌊x⌋ sin(πx) = n× 0 = 0 donc lim
x→n

⌊x⌋ sin(πx) = 0 = g(n) donc g est continue en n,

et ce pour tout n ∈ Z.
Finalement, g est continue sur R.

3. La fonction h est continue sur ]− π
2
, 0[∪]0, π

2
[ comme produit de fonctions continues sur

]− π
2
, 0[∪]0, π

2
[.

Pour tout x ∈]− π
2
, 0[∪]0, π

2
[, on a

h(x) =
cos2(x)− 3 cos(x) + 2

x2 cos(x)
=

(cos(x)− 2)(cos(x)− 1)

x2 cos(x)
∼
0

x2

2

x2
=

1

2

donc lim
x→0

h(x) =
1

2
= h(0) donc h est continue en 0.

Exercice 6. On a pour tout x ∈ I,

max(f, g)(x) =
f(x) + g(x) + |f(x)− g(x)|

2
et min(f, g)(x) =

f(x) + g(x)− |f(x)− g(x)|
2

.

Puisque la fonction valeur absolue est continue sur R et que f et g sont continues sur I, on
en déduit que les fonctions max(f, g) et min(f, g) sont continues sur I comme composée de
fonctions continues sur I.

Exercice 7. Posons pour tout x ∈ [a, b], g(x) = f(x)− x. La fonction g est continue sur [a, b]
comme somme de fonctions continues sur [a, b].
Par ailleurs, g(a) = f(a)− a ⩾ 0 car f(a) ⩾ a et g(b) = f(b)− b ⩽ 0 car f(b) ⩽ b.
D’après le théorème des valeurs intermédiaires, il existe c ∈ [a, b] tel que g(c) = f(c) − c = 0,
i.e. f(c) = c donc c est un point fixe de f.

Exercice 8. Soit T > 0 tel que g est T -périodique.
On suppose qu’il existe l ∈ R ∪ {±∞} tel que lim

x→+∞
g(x) = l.

Soit a ∈ R. On pose pour tout n ∈ N, un = a+ nT. Puisque T > 0, on a lim
n→+∞

un = +∞, donc

par caractérisation séquentielle de la limite, on en déduit que lim
n→+∞

g(un) = lim
n→+∞

g(a+nT ) = l.

Or, puisque g est T -périodique, on sait que pour tout n ∈ N, g(a + nT ) = g(a) donc g(a) = l
(ce qui implique qu’on a nécessairement l ∈ R).
Ainsi, pour tout a ∈ R, g(a) = l donc g est constante.

Exercice 9. On suppose qu’il existe deux réels l et l′ tels que lim
x→+∞

f(x) = l et lim
x→−∞

f(x) = l′.

Soit ε > 0 fixé. Par définition, il existe A > 0 et A′ < 0 tels que pour tout x ⩾ A, |f(x)− l| ⩽ ε
et pour tout x ⩽ A′, |f(x)− l′| ⩽ ε.
Ainsi, pour tout x ⩾ A, |f(x)| = |f(x) − l + l| ⩽ |f(x) − l| + |l| ⩽ ε + |l| et pour tout
x ⩽ A′, |f(x)| ⩽ ε+ |l′|.
Par ailleurs, puisque f est continue sur [A′, A], on sait d’après le théorème des bornes atteintes
que f est bornée sur [A′, A], donc il existe M ⩾ 0 tel que pour tout x ∈ [A′, A], |f(x)| ⩽ M.
Finalement, on a pour tout x ∈ R, |f(x)| ⩽ max(ε+ |l′|,M, ε+ |l|) donc f est bornée sur R.



Exercice 10. Par définition, puisque lim
x→+∞

f(x) = +∞, il existe un réel M > 0 tel que pour

tout x > M, f(x) > f(0).
De même, puisque lim

x→−∞
f(x) = +∞, il existe un réel M ′ < 0 tel que pour tout x < M ′, f(x) >

f(0).
La fonction f étant continue sur le segment [M ′,M ], d’après le théorème des bornes atteintes,
la fonction f admet un minimum sur [M ′,M ], atteint en un réel qu’on note α. Ainsi, pour tout
x ∈ [M ′,M ], f(x) ⩾ f(α).
De plus, puisque 0 ∈ [M ′,M ], f(α) ⩽ f(0).
Il en découle que pour tout x > M, f(x) > f(0) ⩾ f(α) et pour tout x < M ′, f(x) > f(0) ⩾
f(α).
Finalement, pour tout réel x, f(x) ⩾ f(α) donc la fonction f admet bien un minimum global
atteint en α.

Exercice 11.

1. Posons f : x 7→ x17 + x3 sin(x). La fonction f est continue sur R.
Par ailleurs, on a f(0) = 0 et f(π) = π17, donc 1 ∈ [f(0), f(π)].

D’après le théorème des valeurs intermédiaires, on en déduit qu’il existe x0 ∈ [0, π] tel
que f(x0) = 1.

2. Posons g : x 7→ x2 cos(x) + x sin(x). La fonction g est continue sur R.
Par ailleurs, on a g(0) = 0 et g(3π

2
) = −3π

2
, donc −1 ∈ [g(3π

2
), g(0)].

D’après le théorème des valeurs intermédiaires, on en déduit qu’il existe x0 ∈ [0, 3π
2
] tel

que g(x0) = −1.

Exercice 12. Raisonnons par analyse-synthèse.
•Analyse : Soit f une fonction continue sur R telle que pour tout réel x, f(x)2 − f(x) = 0 ⇔
f(x)(f(x)− 1) = 0 ⇔ f(x) = 0 ou f(x) = 1.
Supposons que f prenne ces deux valeurs, c’est à dire supposons qu’il existe deux réels (x, y) ∈
R2 avec x ̸= y tels que f(x) = 0 et f(x) = 1. D’après le théorème des valeurs intermédiaires, il

existe c entre x et y tel que f(c) =
1

2
, ce qui contredit le fait que f ne peut prendre que 0 ou 1

comme valeur.
Ainsi, f prend au maximum une valeur donc f est la fonction constante égale à 0 ou la fonction
constante égale à 1.
• Synthèse : Si f est la fonction constante égale à 0 (ou égale à 1), on a clairement pour tout
x ∈ R, f 2(x)− f(x) = 0.
Les deux fonctions solutions de ce problème sont donc les fonctions constantes égales à 0 ou à
1.

Exercice 13.

1. Soit n ∈ N∗. La fonction fn est dérivable (donc continue) sur [0, 1
2
] et on a pour tout

x ∈ [0, 1
2
], f ′

n(x) = nxn−1 + 4x+ 1 ⩾ 1 > 0 donc la fonction fn est strictement croissante
sur [0, 1

2
].

Par ailleurs, fn(0) = −1 < 0 (car 0n = 0 puisque n > 0) et fn(
1
2
) = 1

2n
> 0.

D’après le théorème des valeurs intermédiaires, puisque fn est continue et strictement
croissante sur [0, 1

2
], il existe un unique réel xn ∈ [0, 1

2
] tel que fn(xn) = 0.

2. Soit n ∈ N∗.

On a fn+1(xn) = xn+1
n + 2x2

n + xn − 1 = 0.

Or, fn(xn) = 0 donc 2x2
n + xn − 1 = −xn

n d’où

fn+1(xn) = xn+1
n − xn

n = xn
n(xn − 1) ⩽ 0



car xn ∈ [0, 1].

3. D’après la question précédente, on a pour tout n ∈ N∗, fn+1(xn) ⩽ 0 = fn+1(xn+1).
Puisque la fonction fn est strictement croissante sur [0, 1

2
], ceci implique que xn ⩽ xn+1

donc la suite (xn)n∈N∗ est croissante.

4. La suite (xn)n∈N∗ est croissante et majorée donc d’après le théorème de la limite mono-
tone, la suite (xn)n∈N∗ converge vers un réel l ∈ [0, 1

2
].

On sait que pour tout n ∈ N∗, fn(xn) = 0, i.e. xn
n +2x2

n + xn − 1 = 0. Passons à la limite
dans cette égalité.

On sait que pour tout n ∈ N∗, 0 ⩽ xn ⩽
1

2
et par croissance de x 7→ xn sur [0,

1

2
], on

obtient pour tout n ∈ N∗, 0 ⩽ xn
n ⩽

1

2n
. Puisque lim

n→+∞

1

2n
= 0, on déduit du théorème

des gendarmes que lim
n→+∞

xn
n = 0.

En passant à la limite, on obtient alors 2l2 + l− 1 = 0, i.e. l =
1

2
ou l = −1 (impossible

car l ∈ [0, 1
2
]).

On en conclut que lim
n→+∞

xn =
1

2
.

Exercice 14.

1. La fonction f est définie en les réels x pour lesquels x2 + 1 ⩾ 0, ce qui est vérifié par
tout réel x donc Df = R.

2. La fonction f est dérivable sur R (car la fonction x 7→ x2 + 1 est dérivable sur R, à
valeurs dans R∗

+ et la fonction racine carrée est dérivable sur R∗
+) et on a pour tout

x ∈ R,

f ′(x) =
2x

2
√
x2 + 1

− 1 =
x−

√
x2 + 1√

x2 + 1
.

Or, pour tout x ∈ R,
√
x2 + 1 > 0 d’une part et d’autre part,

√
x2 + 1 >

√
x2 = |x| ⩾ x

donc x−
√
x2 + 1 < 0. Ainsi, pour tout x ∈ R, f ′(x) < 0 donc la fonction f est strictement

décroissante et continue sur R.
D’après le théorème de la bijection, f est alors bijective de R sur l’intervalle f(R) qui
est à déterminer.

On a lim
x→−∞

f(x) = +∞ car lim
x→+∞

√
x2 + 1 = +∞ et lim

x→+∞
−x = +∞.

En multipliant par la quantité conjuguée, on obtient pour tout réel x,

f(x) =
(
√
x2 + 1− x)(

√
x2 + 1 + x)√

x2 + 1 + x
=

1√
x2 + 1 + x

.

Or, lim
x→+∞

1√
x2 + 1 + x

= 0+.

Puisque f est décroissante et continue sur R, on a donc

f(R) =] lim
x→+∞

f(x), lim
x→−∞

f(x)[=]0,+∞[.

Exercice 15.

1. Soit x ∈ R fixé. Montrons par récurrence que pour tout n ∈ N, f
(

x
2n

)
= f(x).

•Initialisation : Pour n = 0, on a f
(

x
20

)
= f(x) donc la propriété est vraie au rang

n = 0.

•Hérédité : Soit n ∈ N fixé. On suppose que f
(

x
2n

)
= f(x).



Montrons que f
(

x
2n+1

)
= f(x). Par hypothèse sur f, on a

f
( x

2n+1

)
= f

(
2× x

2n+1

)
= f

( x

2n

)
.

Or, par hypothèse de récurrence, f
(

x
2n

)
= f(x) donc f

(
x

2n+1

)
= f(x), ce qui prouve la

propriété au rang n+ 1 et achève la récurrence.

Ainsi, pour tout x ∈ R, pour tout n ∈ N, f
(

x
2n

)
= f(x).

2. Soit x ∈ R. On a lim
n→+∞

x

2n
= 0 et f est continue en 0 donc lim

n→+∞
f
( x

2n

)
= f(0).

Or, d’après la question précédente, pour tout n ∈ N, f( x
2n
) = f(x) donc f(x) = f(0).

3. On a montré en question précédente que pour tout x ∈ R, f(x) = f(0) donc f est
constante.

Réciproquement, si f est une fonction constante, on a pour tout x ∈ R, f(x) = f(2x).

Les fonctions définies sur R,continues en 0 telles que pour tout réel x, f(x) = f(2x) sont
donc les fonctions constantes.

Exercice 16.

1. Soit x ∈ R.
• Montrons par récurrence que pour tout n ∈ N, f(nx) = nf(x).

▷Initialisation : Par hypothèse, on a f(0) = f(0 + 0) = f(0) + f(0) d’où f(0) = 0, ce
qui prouve la propriété au rang n = 0.

▷Hérédité : Soit n ∈ N fixé tel que f(nx) = nf(x).

On a alors f((n+ 1)x) = f(nx) + f(x) = nf(x) + f(x) = (n+ 1)f(x), ce qui prouve la
propriété au rang n+ 1.

D’après le principe de récurrence, on a bien montré que pour tout n ∈ N, f(nx) = nf(x).

Soit n ∈ Z avec n < 0.

On a 0 = f(0) = f(nx+ (−nx)) = f(nx) + f(−nx). Puisque −n > 0, on sait d’après la
récurrence précédente que f(−nx) = −nf(x) d’où f(nx) = −f(−nx) = nf(x), ce qui
prouve que pour tout n ∈ Z, f(nx) = nf(x).

• Montrons que pour tout r ∈ Q, f(rx) = rf(x).

Soit r =
p

q
∈ Q avec (p, q) ∈ Z× N∗.

D’après les propriétés précédntes, on a qf(rx) = f(qrx) = f(px) = pf(x) d’où

f(rx) =
p

q
f(x) = rf(x).

En remplaçant r par x, et x par 1, on en déduit que pour tout x ∈ Q, f(x) = f(1)x.

• Montrons que pour tout x ∈ R, f(x) = xf(1).

On sait déjà que la propriété est vraie pour tout x ∈ Q.

Soit x ∈ R.
Par densité de Q dans R, il existe une suite (xn)n∈N ∈ QN telle que lim

n→+∞
xn = x.

Puisque pour tout n ∈ N, xn ∈ Q, on sait que pour tout n ∈ N, f(xn) = f(1)xn.

D’une part, on a lim
n→+∞

f(1)xn = f(1)x.

Par ailleurs, puisque lim
n→+∞

xn = x et que f est continue sur R, alors lim
n→+∞

f(xn) = f(x).

Par unicité de la limite, on en conclut que f(x) = f(1)x, et ce pour tout réel x.



2. On a montré en question précédente (sans aucune hypothèse supplémentaire sur f) que
pour tout x ∈ Q, f(x) = f(1)x.

Soit x ∈ R. D’après le cours, on sait qu’il existe deux suites (un)n∈N et (vn)n∈N à valeurs
dans Q convergeant vers x telles que pour tout n ∈ N, un ⩽ x ⩽ vn (il suffit de poser

pour tout n ∈ N, un =
⌊10nx⌋
10n

et vn =
⌈10nx⌉
10n

).

Par croissance de f, on en déduit que pour tout n ∈ N, f(un) ⩽ f(x) ⩽ f(vn).

Puisque pour tout n ∈ N, un ∈ Q et vn ∈ Q, on sait que f(un) = f(1)un et f(vn) =
f(1)vn.

Ainsi, pour tout n ∈ N, f(1)un ⩽ f(x) ⩽ f(1)vn.

En passant à la limite dans ces inégalités, on obtient f(1)x ⩽ f(x) ⩽ f(1)x d’où f(x) =
f(1)x, et ce pour tout réel x.


