LycEE FENELON PCSI
ANNEE 2025-2026 A. PANETTA

Corrigé de la liste d’exercices n°12 Limites et continuité

Exercice 1.
1. #On a lilrr(l)(ac2 + cos(x) — 14) sin(e”*) = —13sin(1) < 0.
z—
Par ailleurs, on sait que (In(x)++/z) In(1+2) ~ (In(x)++/x)x = xIn(z)+zy/x — 0

z—0t
car au voisinage de 01, (In(x) + /) In(1 + ) est de signe négatif.
Par quotient, on en déduit que lim+ f(x) = +o0.
z—0

e Puisque lim e * =0 et sin(x) ~ z, on en déduit que sin(e™*) ~ e %,

r——+00 0 —+o00
xle "
Ainsi, f(z ———— donc par croissances comparées, on en déduit que lim T) =
0r.
, _ sin(z?) 3
2. @ On a sin(z?) ~ 2 donc 2° +sin(2?) = 2 | v + —5— > r?et e” —1 > 3
T

donc lim g(x) = V14.
z—0
e En +o00, 0n a
2%/
~N — —> 0+
9(z) +oo e’ 72 In(z) 2—+oo
par croissances comparées.

Exercice 2.

1. En multipliant par la quantité conjuguée, on obtient

(Va2 +3z—1—-vVa?+z)(Va? +3z -1+ Va2 +xz)  2?+3c—1— (2 +2)
Vi +3z—1++Va2+x V2 +3z—1++Va2+x
B 2 —1
Vaz+3r— 14+ Va2 +x
B 20 —1
s(Y1+2-L+1+1)
2z
+oo 21

donc lim Va2 +3z—1—-Va2+z=1.

T—+400

2. Au voisinage de 0, on a

(cos (2)) 7@ = exp (L ln(cos(w))) |

sin?(x)

Or, In(cos(x)) = In(1 4 (cos(z) — 1)) avec lim cos(z) — 1 = 0 donc

z—0



Par ailleurs, sin®(z) ~a donc

1
Finalement, lim (cos (z))sn*@ = ez,
z—0

. Par croissances comparées, on a lin%xln(x) = 0 donc sin(z In(z)) ~ zln(z) d’on
z—

sin(x In(z))

. r(\)Jln(x).
1 |
Or, lim In(z) = —oo donc lim M = —00.
x—0 x—0 x
Ona —2* 4+ +6 _ (x —3)(—x —2) _ —:c—2‘
—6z+9 (x — 3)? z—3
2
Or, hm —2—2=-5,lim2—3=0 et lim z—3 =0" donc lim i = 400
53 T—3— T3+ z—3- 12 — 61+ 9
—224+x+6
et lm ———— = —©

e—3+ 22 — 62 + 9
2
x
. Puisque lin(l) sin(z) = 0 et cos(z) — 1 v ogonen déduit que
T—>

cos(sin(z)) — 1 ~ —sz(x) ~ —%2.
Par ailleurs, tan®(z) — 2sin?(z) = sin?(z) (:;23(2) - 2) ~ 2 <CS;:3((12) - 2) donc
cos(sin(z)) =1 —z o 1 1
tan®(x) — 2sin?(z) © 42 <Cs;1813(<32) B 2) 5 (:;:3((32) - 2) e—0 4

Xr T—+o00 +oo I X +oo T

1 1 1 1
. Puisque — — 0, on a sin (—) ~ — donc |z]sin (—) ~ LLJ
x

-1
Or, pour tout > 0,onaz—1 < |z] < x donc T o Lz] < 1. On en déduit d’apres
1
le théoreme des gendarmes que lim L=] _ =1donc lim |z]sin < ) =1
r—4oco T—+00 €T

. Montrons que cette limite n’existe pas. Supposons par 'absurde qu’il existe [ € RU{£o0}

tel que lim zsin(z) = 1.
xr——+00

Soit u,, = nm pour tout n € N. Puisque hrf U, = 400, on en déduit par composition
n—-+0o0

que liril nmsin(nm) = [. Or, pour tout n € N, nrsin(nr) = 0, donc | = 0.
n—-+0oo

Soit v, = 2nm + 7 pour tout n € N. Puisque lim v, = 400, on en déduit par compo-
n—-+o0o

iti li 2 in(2 —)=1=0.

sition que lim (2nm + 2)8111( nm + 2)

Or, pour tout n € N, (2n7 + §)sin(2n7w + §) = 2n7 + 5 T, Too
Donc [ = 0 = +o00, ce qui est absurde.

Ainsi, la fonction z — z sin(z) n’admet pas de limite en +oo.

2x
T +2 — eQzln(1+%)
. .

. On a pour tout z > 0,




2
Puisque lim — = 0, on en déduit que In (1 + %) ~ % donc 2xIn (1 + %) o 4, i.e.

Tz—+oo T oo

2zIn(14+2) _ 4

2
lim 2z In <1 + —) = 4, puis par composition de limites, hfl e =e".
T —+00

T—>+00

Exercice 3. Supposons que f soit croissante (la preuve est analogue dans le cas ou f est
décroissante).
Soit xg € 1.
La fonction f est croissante sur |a, xo[ et par croissance de f, pour tout x €la, zo[, f(z) < f(zo),
donc f est majorée sur |a, xo[. D’apres le théoréeme de la limite monotone, f admet une limite
finie en x5 et lim f(z) = sup f(x).

TTy z€]a,zo|
De méme, f est croissante sur |z, b[ et par croissance de f, pour tout x €|z, b[, f(z) = f(xo),
donc f est minorée su |xg,b[. D’apres le théoreme de la limite monotone, f admet une limite
finie en z§ et lim f(x) = inf f(z).

$_>;c3‘ z€]z0,b]

Exercice 4.

2

x

1. On sait que 1 — cos(z) oY et lirr(l] 2rx = 0 donc par composition, on obtient
z—

(27x)?

5 = 27%y?

1 — cos(2mz) ~

1 — cos(27z) 27> B o
~ — 07 donc on peut prolonger f par continuité en 0 en
22In(z) o In(z) 2—-

posant f(0) = 0.

2. Posons x = 1+ h. Quand zx tend vers 1, on a h =z — 1 tend vers 0 et

1 —cos(2n(1+h)) 1—cos(2mh+ 2m) 1 — cos(2mh)

@)= T = e )~ A+ AP+ h) G+ AP+ b

On a déja vu en question précédente que 1 — cos(27h) ¥ 272h? et par ailleurs, on sait
que In(1 + h) ~ h donc
2712 h
1+h)~ ——
272 h

—(1 FAE = 0 donc on peut prolonger f par continuité

donc il_% f(z) = }111_% f(1+h) = }LILI(I)
en 1 en posant f(1) = 0.

3. Puisque lir% 2% =0 et sin(z) ~ @, on a par composition sin(z?) ~ 2? donc
T—r

(2) ~ 7 (Ve +4+42)
TS Jexd—2 z

Ainsi, on peut prolonger g par continuité en 0 en posant g(0) = 0.

=z(Vr+4+2) = 0.
T—

Exercice 5.

1. La fonction f est continue sur R* \ {1} comme produit et quotient de fonctions continues
sur R% \ {1}, le dénominateur ne s’y annulant pas.
x4+ 2
~ 3.
€x 1

Calculons lirr% f(z). On sait que In(x) ~r—1 (car In(1+x) ~ x) donc f(z) ~
T—
Ainsi, lin% f(x) =3 = f(1), ce qui montre que f est continue en 1.
x>

Finalement, f est continue sur R .



2. La fonction x +— sin(7x) est continue sur R comme composée de fonctions continues sur
R et la fonction z +— |x] est continue sur R\ Z donc g est continue sur R \ Z comme
produit de fonctions continues sur R \ Z.

Soit n € Z. On a lim sin(mx) = sin(nm) = 0 donc lim |z|sin(mz) =(n —1) x 0 =0 et
r—n Tr—n—

lim |z]sin(rz) =n x 0 =0 donc lim |z] sin(mx) = 0 = g(n) donc g est continue en n,

z—nt T—n

et ce pour tout n € Z.

Finalement, g est continue sur R.

3. La fonction h est continue sur | — %, 0[U]0,

|- ,0[U]0, 2. 2

Pour tout z €] — 7,0[U]0, 5[, on a

s

5| comme produit de fonctions continues sur

cos?(z) — 3cos(x) +2  (cos(z) —2)(cos(z) —1) & 1
h(ﬂ:) = 2 - B ~ —2 = —
22 cos(x) x2 cos(x) 0oz 2
1
donc lir% h(xz) = 5= h(0) donc h est continue en 0.
z—>

Exercice 6. On a pour tout x € I,

f(x) + g(x) +[f(2) = g(2)|

f(@) + g(z) — |£(@) = gx)|
2

max(f,g)(x) = .

et min(f, g)(x) —

Puisque la fonction valeur absolue est continue sur R et que f et g sont continues sur I, on
en déduit que les fonctions max(f,g) et min(f,g) sont continues sur I comme composée de
fonctions continues sur /.

Exercice 7. Posons pour tout = € [a,b], g(x) = f(x) — . La fonction g est continue sur |a, b|
comme somme de fonctions continues sur [a, b].

Par ailleurs, g(a) = f(a) —a > 0 car f(a) > a et g(b) = f(b) — b < 0 car f(b) <b.
D’apres le théoreme des valeurs intermédiaires, il existe ¢ € [a, b] tel que g(c) = f(c) —c =0,
i.e. f(¢) = ¢ donc ¢ est un point fixe de f.

Exercice 8. Soit 7' > 0 tel que g est T-périodique.
On suppose qu'il existe [ € RU {£o0} tel que lirll g(x) =1
Tr—r+00

Soit a € R. On pose pour tout n € N, u,, = a+nT. Puisque T" > 0, on a lim wu, = +o0o, donc

n—-+o0o
par caractérisation séquentielle de la limite, on en déduit que hrf g(uy,) = lirf gla+nT) =1.
n—-+0oo n—-—+0oo
Or, puisque g est T-périodique, on sait que pour tout n € N, g(a + nT) = g(a) donc g(a) =1
(ce qui implique qu’on a nécessairement [ € R).
Ainsi, pour tout a € R, g(a) =1 donc g est constante.

Exercice 9. On suppose qu'il existe deux réels [ et I’ tels que lir}rﬂ f(x)=1let lim f(x)=1.
T—>+00 Tr—r—00

Soit € > 0 fixé. Par définition, il existe A > 0 et A’ < 0 tels que pour tout = > A, |f(z) =] < e
et pour tout x < A’ |f(x) = U'| < e.

Ainsi, pour tout x > A,|f(x)| = |[f(z) =1 +1] < [f(x) =1 +|l]| < e+ |l et pour tout
v <A f(@)] <e+ ).

Par ailleurs, puisque f est continue sur [A’, A], on sait d’apres le théoréme des bornes atteintes
que f est bornée sur [A’, A], donc il existe M > 0 tel que pour tout = € [A", A], |f(x)| < M.
Finalement, on a pour tout = € R, |f(z)| < max(e + |I'|, M,e +|l|) donc f est bornée sur R.



Exercice 10. Par définition, puisque lim f(x) = 400, il existe un réel M > 0 tel que pour
T—r

+o00
tout © > M, f(z) > f(0).
De méme, puisque xgmoo f(x) = +o0, il existe un réel M’ < 0 tel que pour tout = < M', f(z) >
f(0).
La fonction f étant continue sur le segment [M’, M|, d’apres le théoreme des bornes atteintes,
la fonction f admet un minimum sur [M’, M], atteint en un réel qu’on note a. Ainsi, pour tout
v e (M, M), f(z) > f(a).
De plus, puisque 0 € [M’, M], f(«) < f(0).
Il en découle que pour tout x > M, f(x) > f(0) > f(a) et pour tout z < M', f(x) > f(0) >
f(a).
Finalement, pour tout réel z, f(z) > f(«) donc la fonction f admet bien un minimum global
atteint en .

Exercice 11.

1. Posons f : z + x'" + 23sin(x). La fonction f est continue sur R.
Par ailleurs, on a f(0) =0 et f(m) = 77, donc 1 € [f(0), f(m)].
D’apres le théoreme des valeurs intermédiaires, on en déduit qu’il existe xy € [0, 7] tel
que f(zg) = 1.

2. Posons g : x — 2% cos(z) + xsin(z). La fonction g est continue sur R.
Par ailleurs, on a g(0) = 0 et g(2F) = —2%, donc —1 € [g(%F), g(0)].
D’apres le théoreme des valeurs intermédiaires, on en déduit qu'il existe zo € [0, 2] tel
que g(zo) = —1.

Exercice 12. Raisonnons par analyse-synthese.

eAnalyse : Soit f une fonction continue sur R telle que pour tout réel z, f(z)*> — f(z) =0 &
F@)(f(x) — 1) =0 f(z) =0 ou f(z) = 1.

Supposons que f prenne ces deux valeurs, c’est a dire supposons qu'il existe deux réels (z,y) €
R? avec z # y tels que f(z) =0 et f(z) = 1. D’apres le théoreme des valeurs intermédiaires, il

existe ¢ entre x et y tel que f(c) = g7 ce qui contredit le fait que f ne peut prendre que 0 ou 1

comme valeur.

Ainsi, f prend au maximum une valeur donc f est la fonction constante égale a 0 ou la fonction
constante égale a 1.

e Syntheése : Si f est la fonction constante égale & 0 (ou égale a 1), on a clairement pour tout
r €R, f2(x)— f(z) =0.

Les deux fonctions solutions de ce probleme sont donc les fonctions constantes égales a 0 ou a
1.

Exercice 13.

1. Soit n € N*. La fonction f, est dérivable (donc continue) sur [0, 3] et on a pour tout
z €10,3], fi(z) =na" ' +4z+1 > 1> 0 donc la fonction f, est strictement croissante
sur [0, 3].

Par ailleurs, f,(0) = —1 < 0 (car 0" = 0 puisque n > 0) et f,(3) = 5= > 0.

D’apres le théoreme des valeurs intermédiaires, puisque f, est continue et strictement

croissante sur [0, 3], il existe un unique réel z,, € [0, 3] tel que f,(z,) = 0.
2. Soit n € N*.

On a foii(n) = oyt + 227 + 2, =1 =0.

Or, fu(x,) =0 donc 222 + x, — 1 = —2" d’olt

Fasi(an) = oyt — 2 = afi(z, — 1) <0



car x, € [0, 1].

3. D’apres la question précédente, on a pour tout n € N* f,.1(x,) < 0 = fri1(Tny1).
Puisque la fonction f,, est strictement croissante sur [0 ceci implique que z, < T,
donc la suite (z,),en+ est croissante.

AL

4. La suite (z,)nen+ est croissante et majorée donc d’apres le théoréme de la limite mono-
tone, la suite (z,),en+ converge vers un réel [ € [0, 3.
On sait que pour tout n € N*, f,,(x,,) = 0, i.e. " + 222 + x,, — 1 = 0. Passons a la limite

dans cette égalité.

1 1

On sait que pour tout n € N* 0 < z,, < 3 et par croissance de z — ™ sur [0, 5], on

1 1
obtient pour tout n € N*,0 < z]: < —. Puisque lim — = 0, on déduit du théoreme

n n—+oo 2N
des gendarmes que lim z, = 0.

n——+o0o
1

En passant a la limite, on obtient alors 21> +1—1 =0, i.e. [ = 5 ou [l = —1 (impossible

car [ € [0, 3]).

On en conclut que lim =z, = -
n—-+o0o

Exercice 14.

1. La fonction f est définie en les réels x pour lesquels 22 + 1 > 0, ce qui est vérifié par
tout réel x donc Dy = R.

2. La fonction f est dérivable sur R (car la fonction x +— x* + 1 est dérivable sur R, a
valeurs dans R* et la fonction racine carrée est dérivable sur RY) et on a pour tout
xr € R,
2z r—vVar?+1
Jla)= 1= T
2va? +1 2 +1
Or, pour tout x € R, /22 4+ 1 > 0 d’une part et d’autre part, Va2 +1 > Va2 = |z| >
donc z—+/x? + 1 < 0. Ainsi, pour tout = € R, f’(x) < 0 donc la fonction f est strlctement
décroissante et continue sur R.

D’apres le théoreme de la bijection, f est alors bijective de R sur U'intervalle f(R) qui
est a déterminer.

Ona lim f(z)=4o0 car hm Va2 +1=4ocoet lim —z = 4o0.
T——00

T—r—+00
En multipliant par la quantlte conjuguée, on obtient pour tout réel x,

(Vr2+1—-z)(Va2+1+4+x) 1
Va2 + 1+ 2+ 14+

fx) =

1
Or, lim ——— =0+
eotoo /a2 + 14

Puisque f est décroissante et continue sur R, on a donc

F(R) =] lim_f(z), lim_f(x)[=]0. +oo]

T—>+00

Exercice 15.

1. Soit x € R fixé. Montrons par récurrence que pour tout n € N, f (2%) = f(x).
elnitialisation : Pour n = 0, on a f (2%) = f(x) donc la propriété est vraie au rang
n = 0.
eHérédité : Soit n € N fixé. On suppose que f (2%) = f(x).



Montrons que f (2,5%) = f(x). Par hypothese sur f, on a

f<2nx+1) :f<2 % 2nx+1) :f<2£n)'

Or, par hypothese de récurrence, f (2%) = f(x) donc f (Tb%) = f(x), ce qui prouve la
propriété au rang n + 1 et acheve la récurrence.
Ainsi, pour tout z € R, pour tout n € N, f (2%) = f(x).

2. Soit x € R. On a lim 2% =0 et f est continue en 0 donc lim f <£> = f(0).

n—-+o0 n—-+oo 2n

Or, d’apres la question précédente, pour tout n € N, f(5%) = f(x) donc f(z) = f(0).

3. On a montré en question précédente que pour tout = € R, f(z) = f(0) donc f est
constante.
Réciproquement, si f est une fonction constante, on a pour tout x € R, f(z) = f(2z).

Les fonctions définies sur R continues en 0 telles que pour tout réel z, f(z) = f(2x) sont
donc les fonctions constantes.

Exercice 16.

1. Soit z € R.
e Montrons par récurrence que pour tout n € N, f(nz) = nf(x).
>Initialisation : Par hypothese, on a f(0) = f(0+0) = f(0) + f(0) d’ou f(0) =0, ce
qui prouve la propriété au rang n = 0.
>Hérédité : Soit n € N fixé tel que f(nz) =nf(x).
On a alors f((n+ 1)x) = f(nz) + f(x) =nf(x) + f(z) = (n+ 1) f(x), ce qui prouve la
propriété au rang n + 1.
D’apres le principe de récurrence, on a bien montré que pour tout n € N, f(nx) = nf(z).
Soit n € Z avec n < 0.
On a 0= f(0) = f(nx + (—nz)) = f(nx) + f(—nx). Puisque —n > 0, on sait d’apres la
récurrence précédente que f(—nz) = —nf(z) d’ou f(nz) = —f(—nz) = nf(x), ce qui
prouve que pour tout n € Z, f(nz) = nf(z).
e Montrons que pour tout r € Q, f(rz) = rf(x).

Soit = € Q avec (p,q) € Z x N*.
q

D’apres les propriétés précédntes, on a ¢f(rx) = f(qrx) = f(pr) = pf(z) don
flre) = f@) =rf(2).

En remplagant r par x, et x par 1, on en déduit que pour tout z € Q, f(z) = f(1)z.
e Montrons que pour tout x € R, f(z) = = f(1).

On sait déja que la propriété est vraie pour tout z € Q.

Soit z € R.

Par densité de Q dans R, il existe une suite (z,)neny € QY telle que liIE Ty = .
n—-+0oo

Puisque pour tout n € N, z,, € Q, on sait que pour tout n € N, f(x,) = f(1)x,.
D’une part, on a lir}rq fWz, = f(1)x.
n——+0oo

Par ailleurs, puisque lim x,, = x et que f est continue sur R, alors lim f(z,) = f(z).
n—+oo n—+00

Par unicité de la limite, on en conclut que f(z) = f(1)z, et ce pour tout réel .



2. On a montré en question précédente (sans aucune hypothese supplémentaire sur f) que
pour tout z € Q, f(x) = f(1)z.
Soit x € R. D’apres le cours, on sait qu'il existe deux suites (u,)nen €t (Vn)nen & valeurs

dans Q convergeant vers x telles que pour tout n € N,u, < z < v, (il suffit de poser
| 10"z | [10"x]
pour tout n € Nyu, = ———= et v, = ——).
10 10
Par croissance de f, on en déduit que pour tout n € N, f(u,) < f(z) < f(vn).
Puisque pour tout n € N,u, € Q et v, € Q, on sait que f(u,) = f(1)u, et f(v,) =
f(D)v,.
Ainsi, pour tout n € N, f(1)u, < f(z) < f(1)v,.
En passant a la limite dans ces inégalités, on obtient f(1)z < f(z) < f(1)z d’ou f(z) =
f(1)z, et ce pour tout réel x.



