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CORRIGE DU DEVOIR MAISON N°8

Probleme 1 : Lemme de Césaro, criteres de Cauchy et de
d’Alembert

1. «Sig=1,o0napourtout ne Nu,=n+1 — +o0.

n——+o0o
1 __qn+1
e Siq+# 1, on a pour tout n € N, u,, = 4 4
- q
Or, on sait que la suite (¢")neny converge si et seulement si |g| < 1, et dans ce cas,
lim ¢" =0.
n——+0o00
- . . . . 1
Ainsi, la suite (u, ),en converge si et seulement si|q| < 1let dans ce cas, lim w, = ——.
n—-+oco 1—gq

u
2. (a) Soit ¢ = ¢ — 1 > 0. Puisque lim "t — ], il existe un entier ng € N tel que pour

n—-4o0o Unp,

tout n > no, | =2 — 1| < €, ce qui implique que pour tout n > ng, —l<e=q—lI.
n
s Un i1 gt
On en déduit que |pour toutn > ny, Sqg=—
Up, q
u
(b) D’apres la question précédente, pour tout n > ny, Z—ﬁ < q_ donc la suite ( ) n>no
est décroissante.
u u
Il en découle que pour tout n = ng, — < —2.
qn qno
u
Ainsi, |pour toutn > ng, u, < %Sq"
q
n+1 n
(¢) Pour tout n € N v, 1 — v, = Zuk — Zuk = Upy1 > 0 car la suite (uy,)nen est a

k=0 k=0
termes strictement positifs. Ainsi, la suite (v, ),en est croissante.

D’autre part, d’apres la question précédente, on a pour tout n > ng,

nog—1 no—1 ng—1

Zw« ZuHZuk ZUHZU"“’“\ZUH o
k=0

k=ng k=ngo

n
Puisque |q| < 1, d’aprés la question 1.a), on en déduit que la suite (Z qk> est
L. . k=0 neN
convergente. A fortiori, elle est majorée.

Il existe donc un réel M positif tel que pour tout n € N, Z " < M.
k=0

u
Alinsi, pour tout n > ng,v, < Z up + —=M



Or, pour tout n < ng — 1, puisque la suite (v,)nen est croissante, on a

no—1 no—1

uno
Up < Upg—1 = E up < E Uy, + TOM
k=0 k=0 q

no—1

u
Finalement, on a pour tout n € N, v,, < E uy + %SM
q
k=0

On en déduit que la suite (v, ),en est croissante et majorée.

D’apres le théoreme de la limite monotone, on en conclut que|la suite (v, )nen €St convergente.

lim wu, = [, il existe un entier ng € N* tel que pour tout

n—-4o00

Soit € > 0. Puisque

n = ng, |u, — 1| <e.
Il en découle que pour tout n > ng,

n—1
Zuk —nl (up — 1)
k=0

1S, —1| = |F=2— — 1] = | 2= — -
n n n n
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D’apres I'inégalité triangulaire, on en déduit que pour tout n > ny,

no—1 n—1 no—1 n—1
DT I )| I DN (P ) B N (P
‘Sn _ l| g k=0 + k=ng g k=0 + k=ngo
n n n n

Or, on sait que pour tout k > ng, |uy — I| < &. Ainsi, pour tout n > ny,

no—1 n—1 no—1
D= e D (w1 1 1
_ - — n—1-—n €
1S, — 1] < A=0 4 k= Tk=o —I-( 0+).
n n n n
no—1
|ug — 1|
Ainsi, Vn > ng, |S, — | < F=0 n—nog'
n n
Puisque ng € N*, n — ng < n donc n— Mo €.
n

no—1

no—1 Z |uk _”

Par ailleurs, puisque le terme Z |ug, — | est constant, on a lim =~
n—+00 n
k=0
ng—1
> fue =1l
donc il existe un entier n; € N* tel que pour tout n > nq, h=0 <e.
n

Soit N = max(ng, n1).
On a alors pour tout n > N,|S, — | < e+ ¢ d’ou

Vn > N,|S, — | < 2.




()
4. (a)

On en déduit que | lim S, =1.

n—-+00

1
Soit e = q¢—1 > 0. Puisque lim w,; =1, il existe un entier ny € N tel que pour tout
n—-+o0o
1

1 1
n = ng, |us — | < &, ce qui implique que pour tout n = ng,us; — 1l < e=g—1dou

1
pour toutn = ng, un < q.

n—1

On a pour tout n € N, v, — v, = g up — g Up = Upy1 = 0 car la suite (uy,)nen
k=0 k=0

est a termes positifs donc la suite (v,)nen €st croissante.
1

D’autre part, d’apres la question précédente, pour tout n > ng,u; < ¢, ce qui
implique par croissance de x — x™ sur R, que pour tout n = ng, u, < q".

Ainsi, pour tout n > ng, il vient

no—1 no—1 no—1

—Zuk—Zuk—I—Zuk Zuk—i—Zq Zuk—i—Zq

k=ngo k=ng

n
Puisque |q| < 1, d’aprés la question 1.a), on en déduit que la suite (Z qk> est
. . . ’ k:O nEN
convergente. A fortiori, elle est majorée.

Il existe donc un réel M positif tel que pour tout n € N, Z " < M.

k=0
no—1

Ainsi, pour tout n > ng, v, < Z ug + M.

Or, pour tout n < ng — 1, pulsque la suite (vy,)nen est croissante, on a

no—1 no—1
Up K Upg—1 = E up < g uy + M.
no—1

Finalement, on a pour tout n € N, v,, < Z up + M.

On en déduit que la suite (v, )nen st croissante et majorée.

D’apres le théoreme de la limite monotone, on en conclut que | la suite (v, ),en est convergente.

u
Par hypothése, on a lim —=t =1
n—-+oo Up,

Puisque la suite (u,),en est a termes strictement positifs et puisque [ > 0, on en

déduit par continuité de In sur R} que lim In (unﬂ) = 1In(l) d’ou

n—-+o0o Up,

lim In(unqq1) — In(u,) = In(l).

n—-+o0o

Appliquons le lemme de Césaro a la suite (In(up41) — In(uy))nen-

Z In(ugyq) — In(ug)

1 —1
Posons pour tout n € N*, S, = _ In(un) n(uo).
n n




D’apres la question 3, puisque lim In(u,41) — In(u,) = In(l), on déduit du lemme

de Césaro que
n

n—-+00
lim S, = 1In(]).
—+00

In(u,)

Or, pour tout n € N*,
n

ln(uo) '

n

=5, +

In(u
Puisque lim (u0)
n—-4o0o n

= 0, on en déduit que

lim
n—-+o0o n

In(u,)

lim S, = 1In(]).

n—-4o0o

(¢) Par continuité de la fonction exponentielle sur R, on en déduit que

Or, pour tout n € N*, e™n

On en conclut que

lim e
n—-4oo

1
In(un) n
eln(u,ﬁf )

1
lim wup =1.
n—-+o0o

In(un)

n o=l =,

1

Probleme 2 : Une suite définie par récurrence

Partie 1
1.(a) @ On a lim In(z)

z—0t

z—07t

obtient

z—0t

lim A(z) = lim

In(x) B

z—0t X

e Par théoreme de croissances comparées, on a immédiatement

—oo et lim x = 07 donc par opérations sur les limites, on

lim h(x

T—+00

lim
T—r—+00

In(z)

T

=0".

le dénominateur ne s’annulant pas sur R*, et on a pour tout z > 0 :

W ()

1 x  — In(x) _1 — In(z)

T2 2

La fonction h est dérivable sur R* comme quotient de fonctions dérivables sur R7,

Or,1-In(z) >0 hh(z) <lerz<eetl—-—Inz) <0& In(z) >1 <z >eet

pour tout x > 0,z* > e. Ainsi, la fonction h est strictement croissante sur |0, €] et
strictement décroissante sur [e, +00[.

On a le tableau de variation suivant :

z 0 e 400
B (x) + 0 -

2. Soit x € R,. Puisque pour tout = € Ry, f(x) = e* > 0, pour avoir f(x) = z, il faut
nécessairement que x soit strictement positif.

On suppose dorénavant x > 0.




On a alors les équivalences suivantes :

1
flz)=re e =rx<ar=n(r) &

On a les cas suivants :

e Si a €] — 00,0], puisque h est continue et strictement croissante sur |0, 1], on déduit
du théoreme de la bijection que h réalise une bijection de ]0, 1] sur h(]0,1]) =] — oo, 0]
donc il existe un unique réel = €]0, 1] tel que h(z) = a.

Par ailleurs, h(]1, +oc[) = h(]1, ] Ule, +oo[) = h(]1, e]) Uh([e, +o0) =]0, 1]U]0, 1[=]0, 1]
donc il n’existe pas de réel x €]1, 00| pour lequel h(z) = a.

Sia < 0,il existe un unique réelz € R pour lequel f(z) = .

e Supposons que a €]0,1[. On a vu que h(]0,1]) =] — oo, 0] donc il n’existe pas de réel
z €]0, 1] tel que h(z) = a.

Puisque h est continue et strictement croissante sur |1, e[, on déduit du théoreme de la
bijection que h réalise une bijection de |1, e[ sur hA(]1, e[) =0, [ donc il existe un unique
réel xy €]1, e] tel que h(zg) = a.

De méme, puisque h est continue et strictement décroissante sur ]e, +oo[, on déduit du
théoréme de la bijection que h réalise une bijection de Je, +oo[ sur h(Je, +oo[) =0, 1|
donc il existe un unique réel z; €e, +00| tel que h(z1) = a.

1
Sia € }O, - [,l’équation f(xz) = x admet deux solutions sur R’ .
e

1
e Si a = —, on voit d’apres le tableau de variation de h qu’il existe un unique réel x € R

1
pour lequel h(x) = — et on a x = e.
e

1
Sia = —, il existe un unique réelz € R’} pour lequel f(z) = .
e

1
e [Sia > —il n'existe pas de réelz € R* pour lequel f(z) = x| puisque
e

B(R%) = h(]0, ¢] U [e, +00]) = h(]0, ¢]) U h(fe, +o0]) = ] o, 1] u]o, 1] _ ] 0, 2] |

Partie 11

1. @ Si a =0, la fonction f est constante égale a 1 donc lir+n flx)=1.
T—>+00

e Sia >0, lim ar = +o00 et lim e = 400 donc par composition de limites, on
T—+00 T—r+00
obtient

I = lim " = +o0.
S S) = I e = oo

2. La fonction f est dérivable sur R, comme composée de fonctions dérivables sur R, et
on a pour tout z € Ry, f'(x) = ae®. Or, a > 0 et pour tout x € Ry, e > 0 donc pour
tout x € Ry, f'(z) > 0, ce qui assure que ’ f est croissante sur R, .




3. Tout d’abord, remarquons que la suite (u,),en est bien définie car f est définie sur R
et a valeurs dans R, donc pour tout n € N,u, € Ry (qui est le domaine de définition

de f).

Montrons par récurrence sur n € N que pour tout n € N, u,, < tp41.

elnitialisation : Pour n = 0, on a u; = f(up) = f(0) = e =1 > 0 = yg donc la
propriété est vraie au rang n = 0.

eHérédité : Soit n € N fixé. On suppose que u,, < u,+1. Montrons que u, 11 < Upio.
On sait par hypothese de récurrence que u, < u,1 avec u, et u,,; deux réels positifs.

Or, d’apres la question précédente, f est croissante sur Ry donc f(u,) < f(uny1), ie.
Unt1 < Upia, CEe qui prouve la propriété au rang n + 1 et acheve la récurrence.

On a donc bien montré que |la suite (u,),en est croissante.

4. On suppose que a € [0, ¢].
Montrons par récurrence que pour tout n € N, u,, < e.
elnitialisation : Pour n = 0, on a ug = 0 < e donc la propriété est vraie au rang n = 0.
eHérédité : Soit n € N fixé. On suppose que u,, < e. Montrons que u,; < e.
On sait d’apres la question 1 de la partie II que f est croissante sur R, donc

Unt1 = f(un) < fle) = e

Or, on a supposé 0 < a < % donc 0 < a x e < 1 et par croissance de la fonction
exponentielle sur R, on en déduit que e**¢ < e! = e donc u,4; < e < e, ce qui
prouve la propriété au rang n + 1 et acheve la récurrence.

Ainsi, | pour toutn € N, u,, < e.‘

La suite (uy,)nen est donc croissante (d’apres la question précédente) et majorée. D’apres

le théoreme de la limite monotone, on en déduit que |la suite (u,,),en €st convergente.

Remarque : on sait que la suite (u,),en converge alors vers un point fixe de f et d’apres
la partie I, si a € [0, %], la fonction f admet bien des points fixes.

1
5. On suppose que a > —. Montrons que la suite (u,)nen n’est pas majorée.
e
Supposons par I’absurde que la suite (u,)n,en est majorée. D’apres le théoreme de la
limite monotone, puisque la suite (u,)nen est croissante et majorée, elle converge.
Puisque la suite (u,),en est a valeurs dans R, elle converge vers un réel positif [.

Puisque f est continue sur R, on sait par caractérisation séquentielle de la limite que

l= nl_lgI’_loo Upi1 = n1—1>I—&1:loof<un) = f(l) donc [ est un point fixe de f.

Or, d’apres la partie I, si a > %, la fonction f n’admet pas de point fixe.
On aboutit & une contradiction, donc la suite (u,),en n'est pas majorée.

La suite (u,),en est donc une suite croissante et non majorée. Par théoréme, on en
déduit que

lim w, = +o0.
n—4o0o

Partie 111

1. Puisque a < 0, on a lim axr = —oo et lim e” = 0 donc par composition de limites,
r—r+00 T——00

on obtient

S S = B e =0




2. La fonction f est dérivable sur R, comme composée de fonctions dérivables sur R, et
on a pour tout z € Ry, f'(z) = ae®. Or, a < 0 et pour tout x € Ry, e > 0 donc pour
tout x € Ry, f'(z) < 0, ce qui assure que ‘ f est strictement décroissante surR, .

3. (a)

Montrons par récurrence que pour tout n € N, u,, € [0, 1].

eInitialisation : Pour n = 0, on a up = 0 € [0, 1] donc la propriété est vraie au rang
n = 0.

eHérédité : Soit n € N fixé. Supposons que u,, € [0, 1]. Montrons que u, 1 € [0,1].
On sait que u,+1; = f(u,). Or, par hypothese de récurrence, u, € [0,1] et f est
strictement décroissante sur [0, 1] d’apres la question précédente donc

unt1 = f(un) € [f(1), F(O)] = [e%,1].

Or, a < 0, donc e* €]0, 1], d’ou [e?, 1] C [0, 1] et il s’ensuit que u,1 € [0,1], ce qui
prouve la propriété au rang n + 1 et acheve la récurrence.

Ainsi, pour toutn € N, u,, € [0, 1].

e Montrons que la suite (ug,)nen est croissante, i.e. montrons que pour tout n €
N, ug, < Ugpyia.

-Initialisation : On a up = 0,u; = f(ug) = f(0) = € = Liup = f(uy) = f(1) =
e* > 0 donc uy > ug, ce qui prouve la propriété au rang n = 0.

-Hérédité : Soit n € N fixé. Supposons que ug, < Usg,io.

Montrons que ugpi0 < Ugpig-

Puisque f est décroissante sur R, alors f o f est croissante sur R.

Par hypothese de récurrence, on a wuy, < ug,+o donc par croissance de f o f, on

obtient (f o f)(u2,) < (f o f)(ugni2), i.e.Uugnro < Ugnia, ce qui prouve la propriété au
rang n + 1.

Ainsi, pour tout n € N, ug, < ug,19, donc |la suite (ug, )nen est croissante.

e Montrons que la suite (ug,11)nen est décroissante, i.e. montrons que pour tout
n € N, ugny1 = ugnys.

-Initialisation : On a u; = 1 et uz = f(ug) = €. Or, ae® < 0 donc uz = €*" <
1 = uq, ce qui prouve la propriété au rang n = 0.

-Hérédité : Soit n € N fixé. Supposons que ug, 11 = Ugpis.

Montrons que ugp13 = Usgpis-

Par hypothese de récurrence, on a us,,1 = usg,3 donc par croissance de f o f, on

obtient (f o f)(ugni1) = (f o f)(uonys), i.€.uzpt3 = Ugpys, ce qui prouve la propriété
au rang n + 1.

Ainsi, pour tout n € N, ug, 11 > ug,13, donc |la suite (ug,11)nen est décroissante.

D’apres la question 3.a), on a pour tout n € N, uy, € [0,1] et ug,11 € [0,1] donc les
suites (Ugn )nen €t (Ugni1)nen sont bornées.

En particulier, la suite (us,)en est croissante et majorée et la suite (ug,11)nen €st
décroissante et minorée.

D’apres le théoreme de la limite monotone, on en déduit que

les suites (u2y, )nen €t (Ugn11)nen SONt convergentes.

De plus, puisque pour tout n € N, 0 < ug, < 1 et 0 < w9, < 1, par passage a la
limite avec des inégalités larges, on en déduit

0< lim g, <let0O< lim wugpyy < 1.
n—-+o0o n—~+00




4. Soit x €]0,1[. On a les équivalences suivantes :

azr

(fofllw)=z & ¢ =2z

< ae®™ =1In(x) (possible carxz > 0)

1
& e = H<I>
a
. In(x) o
Puisque z €]0, 1], on a In(z) < 0 donc ——= > 0 car a < 0. On a donc I"équivalence
a
1 1
(fof)a)=a o ar=ln (ﬁ) & ar—n (M) o
a a

5. (a) La fonction g est dérivable sur ]0,1[ comme composée de fonctions dérivables sur
10,1[ et on a pour tout x €]0, 1[:

= 1
/ —_— JR—
g('r)_a_ In(z) =a-

zln(x)

De méme, ¢’ est dérivable sur ]0, 1] et on a pour tout z €]0, 1]

" _ln(x)—i—wxi ~In(z) +1
O =" h@E - @h@)?

(b) On a pour tout = €]0, 1], (xIn(x))? > 0 donc le signe de g”(x) dépend uniquement
du numérateur.

Par stricte croissance de In sur ]0, 1], on a

J()>0eh@) +1>0eh@)>-1eor>e ==
e

On a donc ¢"(z) >0z €le 1, 1[,¢"(z) <0z €)0,e et ¢"(z) =0z =€
Ainsi, la fonction ¢’ est strictement décroissante sur ]0, e~ ![ et strictement croissante

sur Je !, 1].
On en déduit que pour tout = €]0,1[, ¢'(z) = ¢'(e71).
1 1
Or, gl(efl)za_mZa—$=a+e>00ara> —e.

I en découle que pour tout = €]0, 1], ¢'(x) > 0.

Ainsi, la fonction g est strictement croissante sur |0, 1.

(c) La fonction g est continue et strictement croissante sur ]0, 1] donc d’apres le théoréme
de la bijection, g est bijective de |0, 1] sur g(]0, 1]).
Puisque ¢ est strictement croissante sur |0, 1], d’apres le théoreme de la limite mo-
notone, g admet des limites en 07 et 1~ et on aura ¢(]0, 1]) =] xli%l+ g(x), xlg{l— g(x)l.

e On a lim azxz = 0.
z—0t

In(x
Par ailleurs, on sait que lim In(z) = —oo et puisque a < 0, on a lim (z) = +o00.
z—07F z—0t a

Or, lim In(x) = 400, donc par composition de limites, on en déduit que

T—r—+00
lim In (ln(x)> = +00.

z—0t a




1
Finalement, lim g(z) = lim az —In ( n(x)) = —00.

z—0t z—0t

e On a lim azxz = a.

z—1-
. . N . In(x) N
Par ailleurs, on a lim In(z) =0~ donc lim =07 car a <0.
rz—1~ Tz—1— a
Or, lim+ In(z) = —o0, donc par composition de limites, on obtient
z—0
1

lim In ( n(:c)) = —00.
z—1- a

Finalement, par somme de limites, on obtient

rz—1— r—1— a

lim ¢(z) = lim az —In (ln(x)) = +o00.

Ainsi, ¢(]0,1[) =] — 0o, +00[= R donc | g réalise une bijection de |0, 1[sur R.
6. On a (fo f)(0) = f(1) = e* # 0 donc 0 n’est pas un point fixe de f o f.
De méme, (f o f)(1) = f(e*) = e*".

Or, e* > 0 et a < 0 donc ae® < 0 d’ou par stricte croissance de la fonction exponentielle
sur R, (f o f)(1) = e*" < €” =1 donc 1 n’est pas non plus un point fixe de f o f.

Ainsi, f o f admet un point fixe dans [0, 1] si et seulement si f o f admet un point fixe
dans |0, 1].
Or, d’apres la question 4, on pour tout = €]0, 1]:

In(x)

(fof)(x):x(:)ax—ln( >:0<:>g(a:):0.

De plus, d’apres la question précédente, g réalise une bijection de ]0,1[ sur R donc il
existe un unique réel z €]0, 1] tel que g(z) = 0, i.e. il existe un unique réel = €]0, 1] tel

que (f o f)(x) =z donc | f o fadmet un unique point fixe dans [0, 1].

7. D’apres la question 3.c), les suites (uo,)nen €t (u2,41) sont convergentes de limites ap-
partenant a [0, 1].
Par ailleurs, ce sont des suites définies par récurrence au moyen de la fonction f o f
(en effet, pour tout n € N,ugni1) = Uiz = (f 0 f)(u2m) et Upmi1)t1 = Usnis =
(f o f)(u2nt1))-
Donc les limites respectives de (uap )nen €t (U2n+1)nen sont des points fixes de f o f dans
[0, 1].
Or, d’apres la question précédente, fo f admet un unique point fixe dans [0, 1]. Notons-le
l.

Nécessairement, on a lim wus, = lim g, 1 = L.
n—-+4o0o n—-+o00

Puisque lim wug, = lm wg,y1, on sait que ceci implique que la suite (uy)pen est
n——+o0o n—-+o0o

convergente et de méme limite.

On en conclut que |la suite (u,),en est convergente et lim u, = [.
n—-+o0o




