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Problème 1 : Lemme de Césaro, critères de Cauchy et de

d’Alembert

1. • Si q = 1, on a pour tout n ∈ N, un = n+ 1 −→
n→+∞

+∞.

• Si q ̸= 1, on a pour tout n ∈ N, un =
1− qn+1

1− q
.

Or, on sait que la suite (qn)n∈N converge si et seulement si |q| < 1, et dans ce cas,
lim

n→+∞
qn = 0.

Ainsi, la suite (un)n∈N converge si et seulement si |q| < 1 et dans ce cas, lim
n→+∞

un =
1

1− q
.

2. (a) Soit ε = q − l > 0. Puisque lim
n→+∞

un+1

un

= l, il existe un entier n0 ∈ N tel que pour

tout n ⩾ n0, |un+1

un
−l| ⩽ ε, ce qui implique que pour tout n ⩾ n0,

un+1

un

−l ⩽ ε = q−l.

On en déduit que pour toutn ⩾ n0,
un+1

un

⩽ q =
qn+1

qn
.

(b) D’après la question précédente, pour tout n ⩾ n0,
un+1

qn+1
⩽

un

qn
donc la suite (un

qn
)n⩾n0

est décroissante.

Il en découle que pour tout n ⩾ n0,
un

qn
⩽

un0

qn0
.

Ainsi, pour toutn ⩾ n0, un ⩽
un0

qn0
qn.

(c) Pour tout n ∈ N, vn+1 − vn =
n+1∑
k=0

uk −
n∑

k=0

uk = un+1 > 0 car la suite (un)n∈N est à

termes strictement positifs. Ainsi, la suite (vn)n∈N est croissante.

D’autre part, d’après la question précédente, on a pour tout n ⩾ n0,

vn =
n∑

k=0

uk =

n0−1∑
k=0

uk +
n∑

k=n0

uk ⩽
n0−1∑
k=0

uk +
n∑

k=n0

un0

qn0
qk ⩽

n0−1∑
k=0

uk +
un0

qn0

n∑
k=0

qk.

Puisque |q| < 1, d’après la question 1.a), on en déduit que la suite

(
n∑

k=0

qk

)
n∈N

est

convergente. A fortiori, elle est majorée.

Il existe donc un réel M positif tel que pour tout n ∈ N,
n∑

k=0

qk ⩽ M.

Ainsi, pour tout n ⩾ n0, vn ⩽
n0−1∑
k=0

uk +
un0

qn0
M.



Or, pour tout n ⩽ n0 − 1, puisque la suite (vn)n∈N est croissante, on a

vn ⩽ vn0−1 =

n0−1∑
k=0

uk ⩽
n0−1∑
k=0

uk +
un0

qn0
M.

Finalement, on a pour tout n ∈ N, vn ⩽
n0−1∑
k=0

uk +
un0

qn0
M.

On en déduit que la suite (vn)n∈N est croissante et majorée.

(d) D’après le théorème de la limite monotone, on en conclut que la suite (vn)n∈N est convergente.

3. (a) Soit ε > 0. Puisque lim
n→+∞

un = l, il existe un entier n0 ∈ N∗ tel que pour tout

n ⩾ n0, |un − l| ⩽ ε.

Il en découle que pour tout n ⩾ n0,

|Sn−l| =

∣∣∣∣∣∣∣∣∣∣

n−1∑
k=0

uk

n
− l

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

n−1∑
k=0

uk − nl

n

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

n−1∑
k=0

(uk − l)

n

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

n0−1∑
k=0

(uk − l) +
n−1∑
k=n0

(uk − l)

n

∣∣∣∣∣∣∣∣∣∣∣
D’après l’inégalité triangulaire, on en déduit que pour tout n ⩾ n0,

|Sn − l| ⩽

∣∣∣∣∣
n0−1∑
k=0

(uk − l)

∣∣∣∣∣
n

+

∣∣∣∣∣
n−1∑
k=n0

(uk − l)

∣∣∣∣∣
n

⩽

∣∣∣∣∣
n0−1∑
k=0

(uk − l)

∣∣∣∣∣
n

+

n−1∑
k=n0

|uk − l|

n
.

Or, on sait que pour tout k ⩾ n0, |uk − l| ⩽ ε. Ainsi, pour tout n ⩾ n0,

|Sn − l| ⩽

∣∣∣∣∣
n0−1∑
k=0

(uk − l)

∣∣∣∣∣
n

+

n−1∑
k=n0

ε

n
=

∣∣∣∣∣
n0−1∑
k=0

(uk − l)

∣∣∣∣∣
n

+
(n− 1− n0 + 1)ε

n
.

Ainsi, ∀n ⩾ n0, |Sn − l| ⩽

n0−1∑
k=0

|uk − l|

n
+

n− n0

n
ε.

(b) Puisque n0 ∈ N∗, n− n0 ⩽ n donc
n− n0

n
ε ⩽ ε.

Par ailleurs, puisque le terme

n0−1∑
k=0

|uk − l| est constant, on a lim
n→+∞

n0−1∑
k=0

|uk − l|

n
= 0

donc il existe un entier n1 ∈ N∗ tel que pour tout n ⩾ n1,

n0−1∑
k=0

|uk − l|

n
⩽ ε.

Soit N = max(n0, n1).

On a alors pour tout n ⩾ N, |Sn − l| ⩽ ε+ ε d’où

∀n ⩾ N, |Sn − l| ⩽ 2ε.



(c) On en déduit que lim
n→+∞

Sn = l.

4. (a) Soit ε = q− l > 0. Puisque lim
n→+∞

u
1
n
n = l, il existe un entier n0 ∈ N tel que pour tout

n ⩾ n0, |u
1
n
n − l| ⩽ ε, ce qui implique que pour tout n ⩾ n0, u

1
n
n − l ⩽ ε = q − l d’où

pour toutn ⩾ n0, u
1
n
n ⩽ q.

(b) On a pour tout n ∈ N, vn+1 − vn =
n−1∑
k=0

uk −
n∑

k=0

uk = un+1 ⩾ 0 car la suite (un)n∈N

est à termes positifs donc la suite (vn)n∈N est croissante.

D’autre part, d’après la question précédente, pour tout n ⩾ n0, u
1
n
n ⩽ q, ce qui

implique par croissance de x 7→ xn sur R+ que pour tout n ⩾ n0, un ⩽ qn.

Ainsi, pour tout n ⩾ n0, il vient

vn =
n∑

k=0

uk =

n0−1∑
k=0

uk +
n∑

k=n0

uk ⩽
n0−1∑
k=0

uk +
n∑

k=n0

qk ⩽
n0−1∑
k=0

uk +
n∑

k=0

qk.

Puisque |q| < 1, d’après la question 1.a), on en déduit que la suite

(
n∑

k=0

qk

)
n∈N

est

convergente. A fortiori, elle est majorée.

Il existe donc un réel M positif tel que pour tout n ∈ N,
n∑

k=0

qk ⩽ M.

Ainsi, pour tout n ⩾ n0, vn ⩽
n0−1∑
k=0

uk +M.

Or, pour tout n ⩽ n0 − 1, puisque la suite (vn)n∈N est croissante, on a

vn ⩽ vn0−1 =

n0−1∑
k=0

uk ⩽
n0−1∑
k=0

uk +M.

Finalement, on a pour tout n ∈ N, vn ⩽
n0−1∑
k=0

uk +M.

On en déduit que la suite (vn)n∈N est croissante et majorée.

(c) D’après le théorème de la limite monotone, on en conclut que la suite (vn)n∈N est convergente.

5. (a) Par hypothèse, on a lim
n→+∞

un+1

un

= l.

Puisque la suite (un)n∈N est à termes strictement positifs et puisque l > 0, on en

déduit par continuité de ln sur R∗
+ que lim

n→+∞
ln

(
un+1

un

)
= ln(l) d’où

lim
n→+∞

ln(un+1)− ln(un) = ln(l).

(b) Appliquons le lemme de Césaro à la suite (ln(un+1)− ln(un))n∈N.

Posons pour tout n ∈ N∗, Sn =

n−1∑
k=0

ln(uk+1)− ln(uk)

n
=

ln(un)− ln(u0)

n
.



D’après la question 3, puisque lim
n→+∞

ln(un+1) − ln(un) = ln(l), on déduit du lemme

de Césaro que lim
n→+∞

Sn = ln(l).

Or, pour tout n ∈ N∗,
ln(un)

n
= Sn +

ln(u0)

n
.

Puisque lim
n→+∞

ln(u0)

n
= 0, on en déduit que

lim
n→+∞

ln(un)

n
= lim

n→+∞
Sn = ln(l).

(c) Par continuité de la fonction exponentielle sur R, on en déduit que

lim
n→+∞

e
ln(un)

n = eln(l) = l.

Or, pour tout n ∈ N∗, e
ln(un)

n = eln(u
1
n
n ) = u

1
n
n .

On en conclut que lim
n→+∞

u
1
n
n = l.

Problème 2 : Une suite définie par récurrence

Partie I

1. (a) • On a lim
x→0+

ln(x) = −∞ et lim
x→0+

x = 0+ donc par opérations sur les limites, on

obtient lim
x→0+

h(x) = lim
x→0+

ln(x)

x
= −∞.

• Par théorème de croissances comparées, on a immédiatement lim
x→+∞

h(x) = lim
x→+∞

ln(x)

x
= 0+.

(b) La fonction h est dérivable sur R∗
+ comme quotient de fonctions dérivables sur R∗

+,
le dénominateur ne s’annulant pas sur R∗

+, et on a pour tout x > 0 :

h′(x) =
1
x
× x− ln(x)

x2
=

1− ln(x)

x2
.

(c) Or, 1 − ln(x) > 0 ⇔ ln(x) < 1 ⇔ x < e et 1 − ln(x) < 0 ⇔ ln(x) > 1 ⇔ x > e et
pour tout x > 0, x2 > e. Ainsi, la fonction h est strictement croissante sur ]0, e] et
strictement décroissante sur [e,+∞[.

On a le tableau de variation suivant :

x

h′(x)

h

0 e +∞

+ 0 −

−∞−∞

1

e

1

e
00

2. Soit x ∈ R+. Puisque pour tout x ∈ R+, f(x) = eax > 0, pour avoir f(x) = x, il faut
nécessairement que x soit strictement positif.

On suppose dorénavant x > 0.



On a alors les équivalences suivantes :

f(x) = x ⇔ eax = x ⇔ ax = ln(x) ⇔ ln(x)

x
= a ⇔ h(x) = a.

On a les cas suivants :

• Si a ∈] − ∞, 0], puisque h est continue et strictement croissante sur ]0, 1], on déduit
du théorème de la bijection que h réalise une bijection de ]0, 1] sur h(]0, 1]) =] −∞, 0]
donc il existe un unique réel x ∈]0, 1] tel que h(x) = a.

Par ailleurs, h(]1,+∞[) = h(]1, e]∪ [e,+∞[) = h(]1, e])∪h([e,+∞[) =]0, 1
e
]∪]0, 1

e
[=]0, 1

e
]

donc il n’existe pas de réel x ∈]1,+∞[ pour lequel h(x) = a.

Si a ⩽ 0, il existe un unique réel x ∈ R∗
+ pour lequel f(x) = x.

• Supposons que a ∈]0, 1
e
[. On a vu que h(]0, 1]) =] −∞, 0] donc il n’existe pas de réel

x ∈]0, 1] tel que h(x) = a.

Puisque h est continue et strictement croissante sur ]1, e[, on déduit du théorème de la
bijection que h réalise une bijection de ]1, e[ sur h(]1, e[) =]0, 1

e
[ donc il existe un unique

réel x0 ∈]1, e[ tel que h(x0) = a.

De même, puisque h est continue et strictement décroissante sur ]e,+∞[, on déduit du
théorème de la bijection que h réalise une bijection de ]e,+∞[ sur h(]e,+∞[) =]0, 1

e
[

donc il existe un unique réel x1 ∈]e,+∞[ tel que h(x1) = a.

Si a ∈
]
0,

1

e

[
, l’équation f(x) = x admet deux solutions surR∗

+.

• Si a =
1

e
, on voit d’après le tableau de variation de h qu’il existe un unique réel x ∈ R+

pour lequel h(x) =
1

e
et on a x = e.

Si a =
1

e
, il existe un unique réel x ∈ R∗

+ pour lequel f(x) = x.

• Si a >
1

e
il n’existe pas de réelx ∈ R∗

+ pour lequel f(x) = x puisque

h(R∗
+) = h(]0, e] ∪ [e,+∞[) = h(]0, e]) ∪ h([e,+∞[) =

]
−∞,

1

e

]
∪
]
0,

1

e

]
=

]
−∞,

1

e

]
.

Partie II

1. • Si a = 0, la fonction f est constante égale à 1 donc lim
x→+∞

f(x) = 1.

• Si a > 0, lim
x→+∞

ax = +∞ et lim
x→+∞

ex = +∞ donc par composition de limites, on

obtient
lim

x→+∞
f(x) = lim

x→+∞
eax = +∞.

2. La fonction f est dérivable sur R+ comme composée de fonctions dérivables sur R+ et
on a pour tout x ∈ R+, f

′(x) = aeax. Or, a ⩾ 0 et pour tout x ∈ R+, e
ax > 0 donc pour

tout x ∈ R+, f
′(x) ⩾ 0, ce qui assure que f est croissante surR+.



3. Tout d’abord, remarquons que la suite (un)n∈N est bien définie car f est définie sur R+

et à valeurs dans R+ donc pour tout n ∈ N, un ∈ R+ (qui est le domaine de définition
de f).

Montrons par récurrence sur n ∈ N que pour tout n ∈ N, un ⩽ un+1.

•Initialisation : Pour n = 0, on a u1 = f(u0) = f(0) = ea×0 = 1 ⩾ 0 = u0 donc la
propriété est vraie au rang n = 0.

•Hérédité : Soit n ∈ N fixé. On suppose que un ⩽ un+1. Montrons que un+1 ⩽ un+2.

On sait par hypothèse de récurrence que un ⩽ un+1 avec un et un+1 deux réels positifs.

Or, d’après la question précédente, f est croissante sur R+ donc f(un) ⩽ f(un+1), i.e.
un+1 ⩽ un+2, ce qui prouve la propriété au rang n+ 1 et achève la récurrence.

On a donc bien montré que la suite (un)n∈N est croissante.

4. On suppose que a ∈ [0, 1
e
].

Montrons par récurrence que pour tout n ∈ N, un ⩽ e.

•Initialisation : Pour n = 0, on a u0 = 0 ⩽ e donc la propriété est vraie au rang n = 0.

•Hérédité : Soit n ∈ N fixé. On suppose que un ⩽ e. Montrons que un+1 ⩽ e.

On sait d’après la question 1 de la partie II que f est croissante sur R+ donc

un+1 = f(un) ⩽ f(e) = ea×e.

Or, on a supposé 0 ⩽ a ⩽ 1
e
donc 0 ⩽ a × e ⩽ 1 et par croissance de la fonction

exponentielle sur R+, on en déduit que ea×e ⩽ e1 = e donc un+1 ⩽ ea×e ⩽ e, ce qui
prouve la propriété au rang n+ 1 et achève la récurrence.

Ainsi, pour toutn ∈ N, un ⩽ e.

La suite (un)n∈N est donc croissante (d’après la question précédente) et majorée. D’après

le théorème de la limite monotone, on en déduit que la suite (un)n∈N est convergente.

Remarque : on sait que la suite (un)n∈N converge alors vers un point fixe de f et d’après
la partie I, si a ∈ [0, 1

e
], la fonction f admet bien des points fixes.

5. On suppose que a >
1

e
. Montrons que la suite (un)n∈N n’est pas majorée.

Supposons par l’absurde que la suite (un)n∈N est majorée. D’après le théorème de la
limite monotone, puisque la suite (un)n∈N est croissante et majorée, elle converge.

Puisque la suite (un)n∈N est à valeurs dans R+, elle converge vers un réel positif l.

Puisque f est continue sur R+, on sait par caractérisation séquentielle de la limite que
l = lim

n→+∞
un+1 = lim

n→+∞
f(un) = f(l) donc l est un point fixe de f.

Or, d’après la partie I, si a > 1
e
, la fonction f n’admet pas de point fixe.

On aboutit à une contradiction, donc la suite (un)n∈N n’est pas majorée.

La suite (un)n∈N est donc une suite croissante et non majorée. Par théorème, on en
déduit que

lim
n→+∞

un = +∞.

Partie III

1. Puisque a < 0, on a lim
x→+∞

ax = −∞ et lim
x→−∞

ex = 0 donc par composition de limites,

on obtient
lim

x→+∞
f(x) = lim

x→+∞
eax = 0.



2. La fonction f est dérivable sur R+ comme composée de fonctions dérivables sur R+ et
on a pour tout x ∈ R+, f

′(x) = aeax. Or, a < 0 et pour tout x ∈ R+, e
ax > 0 donc pour

tout x ∈ R+, f
′(x) < 0, ce qui assure que f est strictement décroissante surR+.

3. (a) Montrons par récurrence que pour tout n ∈ N, un ∈ [0, 1].

•Initialisation : Pour n = 0, on a u0 = 0 ∈ [0, 1] donc la propriété est vraie au rang
n = 0.

•Hérédité : Soit n ∈ N fixé. Supposons que un ∈ [0, 1]. Montrons que un+1 ∈ [0, 1].

On sait que un+1 = f(un). Or, par hypothèse de récurrence, un ∈ [0, 1] et f est
strictement décroissante sur [0, 1] d’après la question précédente donc

un+1 = f(un) ∈ [f(1), f(0)] = [ea, 1].

Or, a < 0, donc ea ∈]0, 1[, d’où [ea, 1] ⊂ [0, 1] et il s’ensuit que un+1 ∈ [0, 1], ce qui
prouve la propriété au rang n+ 1 et achève la récurrence.

Ainsi, pour toutn ∈ N, un ∈ [0, 1].

(b) • Montrons que la suite (u2n)n∈N est croissante, i.e. montrons que pour tout n ∈
N, u2n ⩽ u2n+2.

-Initialisation : On a u0 = 0, u1 = f(u0) = f(0) = e0 = 1, u2 = f(u1) = f(1) =
ea > 0 donc u2 > u0, ce qui prouve la propriété au rang n = 0.

-Hérédité : Soit n ∈ N fixé. Supposons que u2n ⩽ u2n+2.

Montrons que u2n+2 ⩽ u2n+4.

Puisque f est décroissante sur R+, alors f ◦ f est croissante sur R+.

Par hypothèse de récurrence, on a u2n ⩽ u2n+2 donc par croissance de f ◦ f, on
obtient (f ◦ f)(u2n) ⩽ (f ◦ f)(u2n+2), i.e.u2n+2 ⩽ u2n+4, ce qui prouve la propriété au
rang n+ 1.

Ainsi, pour tout n ∈ N, u2n ⩽ u2n+2, donc la suite (u2n)n∈N est croissante.

• Montrons que la suite (u2n+1)n∈N est décroissante, i.e. montrons que pour tout
n ∈ N, u2n+1 ⩾ u2n+3.

-Initialisation : On a u1 = 1 et u3 = f(u2) = eae
a
. Or, aea < 0 donc u3 = eae

a
<

1 = u1, ce qui prouve la propriété au rang n = 0.

-Hérédité : Soit n ∈ N fixé. Supposons que u2n+1 ⩾ u2n+3.

Montrons que u2n+3 ⩾ u2n+5.

Par hypothèse de récurrence, on a u2n+1 ⩾ u2n+3 donc par croissance de f ◦ f, on
obtient (f ◦ f)(u2n+1) ⩾ (f ◦ f)(u2n+3), i.e.u2n+3 ⩾ u2n+5, ce qui prouve la propriété
au rang n+ 1.

Ainsi, pour tout n ∈ N, u2n+1 ⩾ u2n+3, donc la suite (u2n+1)n∈N est décroissante.

(c) D’après la question 3.a), on a pour tout n ∈ N, u2n ∈ [0, 1] et u2n+1 ∈ [0, 1] donc les
suites (u2n)n∈N et (u2n+1)n∈N sont bornées.

En particulier, la suite (u2n)n∈N est croissante et majorée et la suite (u2n+1)n∈N est
décroissante et minorée.

D’après le théorème de la limite monotone, on en déduit que

les suites (u2n)n∈N et (u2n+1)n∈N sont convergentes.

De plus, puisque pour tout n ∈ N, 0 ⩽ u2n ⩽ 1 et 0 ⩽ u2n+1 ⩽ 1, par passage à la
limite avec des inégalités larges, on en déduit

0 ⩽ lim
n→+∞

u2n ⩽ 1 et 0 ⩽ lim
n→+∞

u2n+1 ⩽ 1.



4. Soit x ∈]0, 1[. On a les équivalences suivantes :

(f ◦ f)(x) = x ⇔ eae
ax

= x

⇔ aeax = ln(x) (possible car x > 0)

⇔ eax =
ln(x)

a
.

Puisque x ∈]0, 1[, on a ln(x) < 0 donc
ln(x)

a
> 0 car a < 0. On a donc l’équivalence

(f ◦ f)(x) = x ⇔ ax = ln

(
ln(x)

a

)
⇔ ax− ln

(
ln(x)

a

)
= 0.

5. (a) La fonction g est dérivable sur ]0, 1[ comme composée de fonctions dérivables sur
]0, 1[ et on a pour tout x ∈]0, 1[:

g′(x) = a−
1
ax

ln(x)
a

= a− 1

x ln(x)
.

De même, g′ est dérivable sur ]0, 1[ et on a pour tout x ∈]0, 1[,

g′′(x) =
ln(x) + x× 1

x

(x ln(x))2
=

ln(x) + 1

(x ln(x))2
.

(b) On a pour tout x ∈]0, 1[, (x ln(x))2 > 0 donc le signe de g′′(x) dépend uniquement
du numérateur.

Par stricte croissance de ln sur ]0, 1[, on a

g′′(x) > 0 ⇔ ln(x) + 1 > 0 ⇔ ln(x) > −1 ⇔ x > e−1 =
1

e
.

On a donc g′′(x) > 0 ⇔ x ∈]e−1, 1[, g′′(x) < 0 ⇔ x ∈]0, e−1[ et g′′(x) = 0 ⇔ x = e−1.

Ainsi, la fonction g′ est strictement décroissante sur ]0, e−1[ et strictement croissante
sur ]e−1, 1[.

On en déduit que pour tout x ∈]0, 1[, g′(x) ⩾ g′(e−1).

Or, g′(e−1) = a− 1

e−1 ln(e−1)
= a− 1

−e−1
= a+ e > 0 car a > −e.

Il en découle que pour tout x ∈]0, 1[, g′(x) > 0.

Ainsi, la fonction g est strictement croissante sur ]0, 1[.

(c) La fonction g est continue et strictement croissante sur ]0, 1[ donc d’après le théorème
de la bijection, g est bijective de ]0, 1[ sur g(]0, 1[).

Puisque g est strictement croissante sur ]0, 1[, d’après le théorème de la limite mo-
notone, g admet des limites en 0+ et 1− et on aura g(]0, 1[) =] lim

x→0+
g(x), lim

x→1−
g(x)[.

• On a lim
x→0+

ax = 0.

Par ailleurs, on sait que lim
x→0+

ln(x) = −∞ et puisque a < 0, on a lim
x→0+

ln(x)

a
= +∞.

Or, lim
x→+∞

ln(x) = +∞, donc par composition de limites, on en déduit que

lim
x→0+

ln

(
ln(x)

a

)
= +∞.



Finalement, lim
x→0+

g(x) = lim
x→0+

ax− ln

(
ln(x)

a

)
= −∞.

• On a lim
x→1−

ax = a.

Par ailleurs, on a lim
x→1−

ln(x) = 0− donc lim
x→1−

ln(x)

a
= 0+ car a < 0.

Or, lim
x→0+

ln(x) = −∞, donc par composition de limites, on obtient

lim
x→1−

ln

(
ln(x)

a

)
= −∞.

Finalement, par somme de limites, on obtient

lim
x→1−

g(x) = lim
x→1−

ax− ln

(
ln(x)

a

)
= +∞.

Ainsi, g(]0, 1[) =]−∞,+∞[= R donc g réalise une bijection de ]0, 1[ surR.

6. On a (f ◦ f)(0) = f(1) = ea ̸= 0 donc 0 n’est pas un point fixe de f ◦ f.
De même, (f ◦ f)(1) = f(ea) = eae

a
.

Or, ea > 0 et a < 0 donc aea < 0 d’où par stricte croissance de la fonction exponentielle
sur R, (f ◦ f)(1) = eae

a
< e0 = 1 donc 1 n’est pas non plus un point fixe de f ◦ f.

Ainsi, f ◦ f admet un point fixe dans [0, 1] si et seulement si f ◦ f admet un point fixe
dans ]0, 1[.

Or, d’après la question 4, on pour tout x ∈]0, 1[:

(f ◦ f)(x) = x ⇔ ax− ln

(
ln(x)

a

)
= 0 ⇔ g(x) = 0.

De plus, d’après la question précédente, g réalise une bijection de ]0, 1[ sur R donc il
existe un unique réel x ∈]0, 1[ tel que g(x) = 0, i.e. il existe un unique réel x ∈]0, 1[ tel
que (f ◦ f)(x) = x donc f ◦ f admet un unique point fixe dans [0, 1].

7. D’après la question 3.c), les suites (u2n)n∈N et (u2n+1) sont convergentes de limites ap-
partenant à [0, 1].

Par ailleurs, ce sont des suites définies par récurrence au moyen de la fonction f ◦ f
(en effet, pour tout n ∈ N, u2(n+1) = u2n+2 = (f ◦ f)(u2n) et u2(n+1)+1 = u2n+3 =
(f ◦ f)(u2n+1)).

Donc les limites respectives de (u2n)n∈N et (u2n+1)n∈N sont des points fixes de f ◦ f dans
[0, 1].

Or, d’après la question précédente, f ◦f admet un unique point fixe dans [0, 1]. Notons-le
l.

Nécessairement, on a lim
n→+∞

u2n = lim
n→+∞

u2n+1 = l.

Puisque lim
n→+∞

u2n = lim
n→+∞

u2n+1, on sait que ceci implique que la suite (un)n∈N est

convergente et de même limite.

On en conclut que la suite (un)n∈N est convergente et lim
n→+∞

un = l.


