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Samedi 10 janvier 2026 (4h00)

L’énoncé est constitué d’un exercice, d’un problème et comporte 6 pages.
Le candidat attachera la plus grande importance à la clarté, la précision et la concision de
la rédaction. Le soin de la copie ainsi que l’orthographe entreront également pour une part
importante dans l’appréciation du travail rendu.
Les résultats doivent être encadrés.
Si un candidat repère ce qui peut lui sembler être une erreur d’énoncé, il le signalera sur sa
copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu’il a été
amené à prendre.
Lorsqu’un raisonnement utilise le résultat d’une question précédente, il est demandé au candidat
d’indiquer précisément le numéro de la question utilisée.

Les calculatrices sont interdites.
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Exercice : Une suite récurrente

Soit a un réel positif ou nul.
On définit la suite (un)n⩾1 par

u1 = a et ∀n ∈ N∗, un+1 =
u2
n√
n
.

1. Justifier que pour tout n ⩾ 1, un ⩾ 0.

2. Montrer qu’il existe un unique réel positif a, que l’on précisera, pour lequel la suite (un)n⩾1

est constante.

3. Montrer que si la suite (un)n⩾1 converge, alors sa limite est 0.

4. Montrer que si un ⩾
√
n pour tout n ⩾ 1, alors (un)n⩾1 est croissante. Dans ce cas,

préciser sa limite.

5. On suppose dans cette question qu’il existe un entier k ⩾ 1 tel que uk <
√
k.

(a) Montrer que pour tout n ⩾ k, un <
√
n.

(b) Montrer que la suite (un)n⩾1 est décroissante à partir d’un certain rang.

(c) Déterminer la limite de (un)n⩾1.

6. On suppose dorénavant, et jusqu’à la fin de l’exercice, que a > 0.

(a) Justifier que pour tout n ⩾ 1, un > 0.

(b) Montrer l’égalité suivante :

∀n ∈ N∗, ln(un) = 2n−1 ln(a)− 2n−2

n−2∑
k=0

ln(k + 1)

2k+1
.

On pose désormais pour tout n ∈ N, wn = 2−n−1 ln(n+ 1) et vn =
n∑

k=0

wk.

7. (a) Montrer que la suite (vn)n∈N est croissante.

(b) Montrer que

∀n ⩾ 1, vn =
1

2
vn−1 +

n∑
k=1

2−k−1 ln

(
1 +

1

k

)
.

(c) En déduire que

∀n ∈ N, vn =
n∑

k=1

2−k ln

(
1 +

1

k

)
− wn.

(d) Montrer que

∀n ∈ N∗,
1

2
ln(2) ⩽

n∑
k=1

2−k ln

(
1 +

1

k

)
⩽ ln(2).

(e) Montrer que la suite (vn)n∈N converge et que sa limite, qu’on notera V, vérifie l’en-
cadrement

ln(2)

2
⩽ V ⩽ ln(2).

8. (a) Montrer que la suite (un)n⩾1 converge si et seulement s’il existe un entier k ⩾ 2 tel
que uk < 1.

(b) Montrer que la suite (un)n⩾1 converge si et seulement si a < e
V
2 .

(c) Montrer que lim
n→+∞

un = +∞ si et seulement si a ⩾ e
V
2 .

9. Montrer que si a < 4
√
2, alors lim

n→+∞
un = 0 et que si a ⩾

√
2, alors lim

n→+∞
un = +∞.

2



Problème : Théorème de Charkovski

Dans tout le problème, on note I le segment [0, 1] et on considère une fonction f : I −→ I
continue.
Pour tout n ∈ N, on note fn la fonction f ◦ · · · ◦ f (itérée n fois).
Soit n ⩾ 1 un entier. Un point x ∈ I est dit n-périodique pour f si fn(x) = x et si f p(x) ̸= x
pour tout p ∈ N∗ avec p < n. L’entier n s’appelle la période de x. Un point x ∈ I est dit
périodique s’il est n-périodique pour au moins un entier n ⩾ 1.
Par exemple, un point fixe de f est un point 1-périodique.
Le but de ce problème est de démontrer le théorème suivant, dû à Charkovski(1964) :

Si f admet un point 3-périodique dans I, alors f admet des points n-périodiques
pour tout entier naturel n non nul.

Ce théorème est souvent résumé sous la formule suivante : ≪ 3-cycle implique chaos ≫.
Le problème est constitué de quatre parties indépendantes :
• Dans la Partie I, on examine quelques exemples.
• Dans la Partie II, on montre qu’il existe une fonction qui admet un point 5-périodique mais
pas de point 3-périodique.
• Dans la Partie III, on construit à partir d’une fonction f une fonction F qui a des points
périodiques de périodes doubles de celles de f.
• Enfin, on démontre le théorème de Charkovski dans la Partie IV.

Partie I : Premiers exemples

1. Soit f : I −→ I continue.

(a) Montrer que f admet au moins un point fixe sur I.

(b) Donner un exemple de fonction f qui a un unique point fixe et qui n’a aucun point
n-périodique pour n > 1.

2. On définit

f :
I −→ I

x 7−→
{

2x si 0 ⩽ x ⩽ 1
2

2(1− x) si 1
2
< x ⩽ 1.

(a) Montrer que f est continue sur I et tracer son graphe.

(b) Montrer que f admet un point 3-périodique que l’on précisera.

On pourra le rechercher dans l’intervalle [1
8
, 1
4
].

Partie II : 5-périodicité n’implique pas 3-périodicité

On considère dans cette partie la fonction f continue sur I définie par :
f(0) =

1

2
, f

(
1

4

)
= 1, f

(
1

2

)
=

3

4
, f

(
3

4

)
=

1

4
et f(1) = 0

f est affine sur

[
k

4
,
k + 1

4

]
pour tout k ∈ J0, 3K.

1. Tracer le graphe de la fonction f.

2. Montrer que 0 est un point périodique pour f et préciser sa période.

3. Donner les images respectives des intervalles [0, 1
4
], [1

4
, 1
2
] et [3

4
, 1] par f 3 = f ◦ f ◦ f.

La fonction f admet-elle un point 3-périodique dans l’un de ces intervalles ?
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4. Montrer que f 3 est strictement monotone sur l’intervalle [1
2
, 3
4
]. En déduire que f 3 admet

un unique point fixe sur I.

5. En conclure que f n’admet pas de point 3-périodique.

Partie III : Doublement de période

Soit f : I −→ I continue. On appelle ≪ double de f ≫la fonction F : I −→ I telle que :

F (x) =
2

3
+

f(3x)

3
si x ∈

[
0,

1

3

]
F

(
2

3

)
= 0 etF (1) =

1

3

F est continue sur [0, 1] et affine sur

[
1

3
,
2

3

]
et sur

[
2

3
, 1

] .

Concrètement, on divise le segment [0, 1] sur l’axe des abscisses en trois tiers, ainsi que sur l’axe

des ordonnées, on compresse le graphe de f par un facteur
1

3
et on le met dans le coin supérieur

gauche. Enfin, on relie les points avec des fonctions affines, comme dans le graphe suivant.

1

1

0

f

1/3 2/3 1

1/3

2/3

1

0

F

1. Donner l’expression de F (x) pour x ∈
[
1

3
,
2

3

]
puis pour x ∈

[
2

3
, 1

]
.

2. Montrer que F

([
0,

1

3

])
⊂

[
2

3
, 1

]
et que F

([
2

3
, 1

])
=

[
0,

1

3

]
.

3. Montrer que F admet un unique point fixe sur I, et que celui-ci se situe dans

]
1

3
,
2

3

[
.

Dans les questions suivantes, on notera p ce point fixe.

4. Soit x ∈
]
1

3
,
2

3

[
avec x ̸= p.

On définit la suite (un)n∈N par u0 = x et pour tout n ∈ N, un+1 = F (un).

On souhaite montrer qu’il existe un rang n0 ∈ N tel que pour tout n ⩾ n0, un /∈
]
1

3
,
2

3

[
.

Supposons par l’absurde que pour tout n ∈ N, un ∈
]
1

3
,
2

3

[
.

(a) Soit a le cœfficient directeur de F sur le segment

[
1

3
,
2

3

]
. Montrer que a ⩽ −2.

(b) Montrer que pour tout n ∈ N, |un+1 − p| ⩾ 2|un − p|.
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(c) En déduire que |un − p| −→
n→+∞

+∞ et aboutir à une absurdité.

(d) Montrer l’existence d’un entier n0 tel que pour tout n ⩾ n0, un /∈
]
1

3
,
2

3

[
.

(e) En conclure que F n’admet aucun point périodique dans

]
1

3
,
2

3

[
, mis à part son

point fixe.

5. Soit x ∈
[
0,

1

3

]
.

(a) Donner la valeur de F (x), F 2(x), F 3(x) et F 4(x).

(b) Donner par récurrence sur k la valeur de F 2k(x) et de F 2k+1(x) pour tout k ∈ N.
(c) En déduire que si x est un point périodique de f de période n ∈ N∗, alors

x

3
est un

point périodique de F de période 2n.

6. Soit x ∈ I un point périodique de F qui n’est pas un point fixe de F.

(a) Montrer que la période de x est un entier pair. On la note 2q, pour un certain q ∈ N∗.

(b) Montrer que l’un des deux nombres x et F (x) appartient à l’intervalle

[
0,

1

3

]
.

(c) On suppose dans cette question que x ∈ [0, 1
3
].Montrer que 3x est q-périodique pour

f.

(d) On suppose dans cette question que F (x) ∈ [0, 1
3
].Montrer que 3F (x) est q-périodique

pour f.

7. Montrer finalement que pour tout n ∈ N∗, f admet un point n-périodique si et seulement
si F admet un point 2n-périodique.

8. Application : En déduire qu’il existe une fonction admettant un point 10-périodique mais
aucun point 6-périodique.

Partie IV : Preuve du théorème

Soit f : I −→ I continue.

1. Soit J un segment non vide inclus dans I. Soit K un segment non vide inclus dans f(J).
On se propose de montrer qu’il existe un segment L inclus dans J tel que K = f(L).

(a) On suppose K réduit à un point. Montrer l’existence de L.

On suppose désormais K = [α, β] avec α < β. Considérons (a, b) ∈ J2 tels que f(a) = α
et f(b) = β.

Sans perte de généralité (l’autre cas étant analogue), on suppose dans la suite que a < b.

(b) Soit A = {x ∈ [a, b], f(x) = β}. Montrer que A admet une borne inférieure puis que
cette borne inférieure est un minimum. On notera v = min(A).

(c) Soit B = {x ∈ [a, v], f(x) = α}. Montrer de même l’existence de u = max(B).

(d) En déduire l’existence de L.

2. Soit K un segment non vide inclus dans I tel que K ⊂ f(K). Montrer que f admet un
point fixe dans K.

Lorsque I0 et I1 sont deux segments inclus dans I, on dit que I0f -recouvre I1, et on note I0 → I1,
si I1 ⊂ f(I0).
On note I0 → I1 → I2 → · · · → In si pour tout k ∈ J0, n− 1K, Ik → Ik+1.
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3. On suppose qu’il existe n+1 segments non vides I0, I1, . . . , In inclus dans I tels qu’on ait
I0 → I1 → I2 → · · · → In.

Montrer qu’il existe une famille (Jk)0⩽k⩽n−1 de segments non vides tels que pour tout
k ∈ J0, n− 1K, Jk ⊂ Ik, pour tout k ∈ J0, n− 2K, f(Jk) = Jk+1 et f(Jn−1) = In.

Si x0 ∈ J0, que peut-on dire des fk(x0) où 0 ⩽ k ⩽ n− 1 ?

4. On suppose que f admet un point 3-périodique x.

On introduit les réels x0 = min{x, f(x), f 2(x)}, x1 = f(x0) et x2 = f(x1).

A l’aide de x0, x1, x2, déterminer deux segments S1 et S2 inclus dans I ayant un seul point
commun tels que S1 → S1 et S1 → S2 → S1.

En déduire que f admet un point fixe et un point 2-périodique.

On pourra distinguer les cas x1 < x2 et x2 < x1.

5. On suppose toujours que x est un point 3-périodique.

Montrer qu’il existe un point n-périodique pour tout n ⩾ 1.

On cherchera une suite de la forme S1 → S2 → S2 → · · · → S2 → S1.
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