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Exercice : Une suite récurrente

1. On a pour tout n ⩾ 1, un+1 =
u2
n√
n
⩾ 0 donc pour tout n ⩾ 2, un ⩾ 0.

Par ailleurs, u1 = a ⩾ 0 donc on a bien un ⩾ 0 pour toutn ⩾ 1.

2. On a les équivalences suivantes :

(un)n⩾1 est constante ⇔ ∀n ⩾ 1, un+1 = un ⇔ ∀n ⩾ 1,
u2
n√
n
= un ⇔ ∀n ⩾ 1, un(un−

√
n) = 0

ce qui équivaut à dire que pour tout n ⩾ 1, un = 0 ou un =
√
n.

Or, s’il existait un n ⩾ 1 tel que un =
√
n, on aurait un+1 =

u2
n√
n

=
n√
n

=
√
n puis

un+2 =
u2
n+1√
n+ 1

=
n√
n+ 1

̸=
√
n = un+1 donc la suite ne serait pas constante.

Ainsi, la suite est constante si et seulement si pour tout n ⩾ 1, un = 0. En particulier,
ceci impose u1 = a = 0 et dans ce cas, on a bien pour tout n ⩾ 1, un = 0.

On en déduit que la suite (un)n⩾1 est constante si et seulement si a = 0.

3. Supposons qu’il existe l ∈ R tel que lim
n→+∞

un = l. Par opérations sur les limites, on a

l = lim
n→+∞

un+1 = lim
n→+∞

u2
n√
n
= l × 0 = 0.

On a donc bien montré que si (un)n⩾1 converge, alors lim
n→+∞

un = 0.

4. Supposons que pour tout n ⩾ 1, un ⩾
√
n.

Puisque lim
n→+∞

√
n = +∞, on obtient directement par comparaison que lim

n→+∞
un = +∞.

En particulier, si un ⩾
√
n pour tout n ⩾ 1, on a pour tout n ⩾ 1, un > 0 et

un+1

un

=
un√
n
⩾ 1

donc pour tout n ⩾ 1, un+1 ⩾ un, ce qui prouve que (un)n⩾1 est croissante.

5. (a) Montrer par récurrence que pour tout n ⩾ k, un <
√
n.

•Initialisation : Pour n = k, on a bien par hypothèse uk <
√
k.

•Hérédité : Soit n ⩾ k fixé. On suppose que un <
√
n. Montrons que un+1 <√

n+ 1.

Puisque pour tout n ⩾ 1, un ⩾ 0, on a 0 ⩽ un <
√
n donc u2

n < n et on a alors

un+1 =
u2
n√
n
<

n√
n
<

√
n <

√
n+ 1,

ce qui prouve la propriété au rang n+ 1.

D’après le principe de récurrence, on a bien pour toutn ⩾ k, un <
√
n.
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(b) Pour tout n ⩾ k, on a

un+1 − un =
u2
n√
n
− un = un

(
un√
n
− 1

)
.

Or, pour tout n ⩾ k,
un√
n
− 1 ⩽ 0 (car un <

√
n) et un ⩾ 0 donc un+1 − un ⩽ 0.

On en déduit que (un)n⩾k est décroissante.

(c) La suite (un)n⩾k est décroissante et minorée par 0. D’après le théorème de la limite
mononte, on en déduit que (un)n⩾k converge.

Or, d’après la question 3, si la suite (un)n⩾1 converge, sa limite est nécessairement
0.

Ceci justifie que (un)n⩾1 converge vers 0.

6. (a) Montrons par récurrence que pour tout n ⩾ 1, un > 0.

•Initialisation : On a u1 = a > 0 par hypothèse, donc la propriété est vraie au
rang n = 1.

•Hérédité : Soit n ⩾ 1 fixé tel que un > 0.

On a alors un+1 =
u2
n√
n
> 0, ce qui prouve la propriété au rang n+ 1.

On a bien montré par récurrence que un > 0 pour toutn ⩾ 1.

(b) Montrons l’égalité voulue par récurrence sur n ∈ N∗.

Notons que pour tout n ⩾ 1, ln(un) est bien défini car un > 0 d’après la question
précédente.

•Initialisation : Pour n = 1, on a

2n−1 ln(a)− 2n−2

n−2∑
k=0

ln(k + 1)

2k+1
= ln(a) = ln(u1),

où on a utilisé que la somme est nulle car vide et que a > 0. La propriété est donc
vraie au rang n = 1.

•Hérédité : Soit n ⩾ 1 fixé. On suppose que ln(un) = 2n−1 ln(a)−2n−2

n−2∑
k=0

ln(k + 1)

2k+1
.

Montrons que ln(un+1) = 2n ln(a)− 2n−1

n−1∑
k=0

ln(k + 1)

2k+1
.

On a

ln(un+1) = ln

(
u2
n√
n

)
= 2 ln(un)−

1

2
ln(n)

= 2n ln(a)− 2n−1

n−2∑
k=0

ln(k + 1)

2k+1
− 2n−1

2n
ln(n)

= 2n ln(a)− 2n−1

n−1∑
k=0

ln(k + 1)

2k+1
,

ce qui prouve la propriété au rang n+ 1.
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On a donc bien montré par récurrence que

∀n ∈ N∗, ln(un) = 2n−1 ln(a)− 2n−2

n−2∑
k=0

ln(k + 1)

2k+1
.

7. (a) Pour tout n ∈ N, on a vn+1 − vn =
n+1∑
k=0

wk −
n∑

k=0

wk = wn+1 =
ln(n+ 2)

2n+2
⩾ 0 donc

la suite (vn)n∈N est croissante.

(b) Soit n ⩾ 1. On a

1

2
vn−1 +

n∑
k=1

2−k−1 ln

(
1 +

1

k

)
=

1

2

n−1∑
k=0

wk +
n∑

k=1

2−k−1 ln

(
k + 1

k

)

=
n−1∑
k=0

2−k−2 ln(k + 1) +
n∑

k=1

2−k−1(ln(k + 1)− ln(k))

=
n∑

k=1

2−k−1 ln(k) +
n∑

k=1

2−k−1 ln(k + 1)−
n∑

k=1

2−k−1 ln(k)

=
n∑

k=1

2−k−1 ln(k + 1)

=
n∑

k=0

wk carw0 = 0

d’où ∀n ⩾ 1, vn =
1

2
vn−1 +

n∑
k=1

2−k−1 ln

(
1 +

1

k

)
.

(c) Montrons par récurrence que pour tout n ∈ N, vn =
n∑

k=1

2−k ln

(
1 +

1

k

)
− wn.

•Initialisation : Pour n = 0, on a
n∑

k=1

2−k ln

(
1 +

1

k

)
− wn = −w0 = 0 et v0 =

0∑
k=0

wk = w0 = 0 donc la propriété est vraie au rang n = 0.

•Hérédité : Soit n ∈ N fixé. Supposons que vn =
n∑

k=1

2−k ln

(
1 +

1

k

)
− wn.

Montrons que vn+1 =
n+1∑
k=1

2−k ln

(
1 +

1

k

)
− wn+1.
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D’après la question précédente, on a

vn+1 =
1

2
vn +

n+1∑
k=1

2−k−1 ln

(
1 +

1

k

)

=
n∑

k=1

2−k−1 ln

(
1 +

1

k

)
− 1

2
wn +

n+1∑
k=1

2−k−1 ln

(
1 +

1

k

)
= 2

n∑
k=1

2−k−1 ln

(
1 +

1

k

)
− 1

2
× 2−n−1 ln(n+ 1) + 2−n−2 ln

(
1 +

1

n+ 1

)
=

n∑
k=1

2−k ln

(
1 +

1

k

)
− 2−n−2 ln(n+ 1) + 2−n−2 ln

(
n+ 2

n+ 1

)
=

n∑
k=1

2−k ln

(
1 +

1

k

)
− 2−n−2 ln(n+ 1) + 2−n−2 ln(n+ 2)− 2−n−2 ln(n+ 1)

=
n∑

k=1

2−k ln

(
1 +

1

k

)
− 2−n−1 ln(n+ 1) + 2−n−1 ln(n+ 2)− 2−n−2 ln(n+ 2)

=
n∑

k=1

2−k ln

(
1 +

1

k

)
+ 2−n−1 ln

(
1 +

1

n+ 1

)
− wn+1

=
n+1∑
k=1

2−k ln

(
1 +

1

k

)
− wn+1,

ce qui prouve la propriété au rang n+ 1.

D’après le principe de récurrence, on a bien montré que

∀n ∈ N, vn =
n∑

k=1

2−k ln

(
1 +

1

k

)
− wn.

(d) Soit n ∈ N∗.

D’une part, on a
n∑

k=1

2−k ln

(
1 +

1

k

)
=

1

2
ln(2) +

n∑
k=2

2−k ln

(
1 +

1

k

)
⩾

1

2
ln(2) car

pour tout k ∈ J2, nK, 2−k ln

(
1 +

1

k

)
⩾ 0.

D’autre part, pour tout k ∈ J1, nK, ln
(
1 +

1

k

)
⩽ ln(2) donc

n∑
k=1

2−k ln

(
1 +

1

k

)
⩽ ln(2)

n∑
k=1

1

2k
= ln(2)×1

2
×
1− (1

2
)n

1− 1
2

= ln(2)

(
1−

(
1

2

)n)
⩽ ln(2).

On obtient donc

∀n ∈ N∗,
1

2
ln(2) ⩽

n∑
k=1

2−k ln

(
1 +

1

k

)
⩽ ln(2).

(e) Pour tout n ∈ N, wn ⩾ 0 donc

vn =
n∑

k=1

2−k ln

(
1 +

1

k

)
− wn ⩽

n∑
k=1

2−k ln

(
1 +

1

k

)
⩽ ln(2).
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Ainsi, la suite (vn)n∈N est majorée par ln(2). Or, d’après la question 7.(a), elle est
croissante. D’après le théorème de la limite monotone, on en déduit que la suite
(vn)n∈N converge vers une limite notée V.

De plus, la question précédente permet d’affirmer que

∀n ∈ N∗,
1

2
ln(2)− wn ⩽ vn ⩽ ln(2)− wn.

Or, par croissances comparées, lim
n→+∞

wn = lim
n→+∞

ln(n+ 1)

2n+1
= 0.

En passant à la limite dans les inégalités ci-dessus, on obtient donc bien
ln(2)

2
⩽ V ⩽ ln(2).

8. (a) Raisonnons par double implication.

• Supposons que (un)n⩾1 converge. D’après la question 3, on a alors lim
n→+∞

un = 0. Par

définition de la convergence vers 0 (avec ε = 1), et puisque pour tout n ⩾ 1, un ⩾ 0,

il existe un rang n0 ∈ N tel que pour tout n ⩾ n0, 0 ⩽ un ⩽
1

2
< 1.

En particulier, il existe bien un entier k ⩾ 2 tel que uk < 1.

• Réciproquement, supposons qu’il existe un entier k ⩾ 2 tel que uk < 1. Puisque
k ⩾ 2, on a

√
k ⩾

√
2 > 1 donc uk <

√
k.

D’après la question 5, cela implique que lim
n→+∞

un = 0.

On a donc bien montré par double implication que

(un)n⩾1 converge si et seulement s’il existe k ⩾ 2 tel queuk < 1.

(b) On a les équivalences suivantes :

(un)n⩾1 converge ⇔ ∃n ⩾ 2, un < 1

⇔ ∃n ⩾ 2, ln(un) < 0

⇔ ∃n ⩾ 2, 2n−1 ln(a) < 2n−2

n−2∑
k=0

ln(k + 1)

2k+1
(question 6.(b))

⇔ ∃n ⩾ 2, 2 ln(a) <
n−2∑
k=0

wk

⇔ ∃n ⩾ 2, 2 ln(a) < vn−2

⇔ ∃n0 ∈ N, 2 ln(a) < vn0

⇔ 2 ln(a) < sup
n∈N

vn car (vn)n∈N est croissante et majorée

⇔ 2 ln(a) < V,

ce qui prouve que (un)n⩾1 converge si et seulement si a < e
V
2 .

(c) D’après les questions 4 et 5, on sait que s’il existe un entier k tel que uk <
√
k, alors

lim
n→+∞

un = 0 et que dans le cas contraire (i.e. pour tout entier n, un ⩾
√
n), alors

lim
n→+∞

un = +∞.

En prenant la négation de l’équivalence montrée en question précédente, on a donc

bien lim
n→+∞

un = +∞ si et seulement si a ⩾ e
V
2 .
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9. D’après la question 7.(e), on sait que

ln(2)

2
⩽ V ⩽ ln(2) ⇔⩽

ln(2)

4
⩽

V

2
⩽

ln(2)

2
⇔ 4

√
2 ⩽ e

V
2 ⩽

√
2.

• Si a <
4
√
2 , on a alors a < e

V
2 et ceci implique d’après la question 8.(b) que lim

n→+∞
un = 0.

• Si a ⩾
√
2 , alors a ⩾ e

V
2 et ceci implique d’après la question précédente que lim

n→+∞
un = +∞.

Problème : Théorème de Charkovski

Partie I : Premiers exemples

1. (a) Posons pour tout x ∈ I, g(x) = f(x) − x. La fonction g est continue sur I comme
somme de fonctions continues sur I.

Puisque f est à valeurs dans I = [0, 1], on a g(0) = f(0) ⩾ 0 et g(1) = f(1)− 1 ⩽ 0
donc 0 ∈ [g(1), g(0)].

D’après le théorème des valeurs intermédiaires, on en déduit qu’il existe x ∈ [0, 1] tel

que g(x) = 0, i.e. f(x) = x. Ainsi, la fonction f admet au moins un point fixe sur I.

(b) Si f est la fonction nulle sur I, le seul point fixe de f sur I est 0. De plus, pour
tout n ∈ N∗, fn est encore la fonction nulle dont le seul point fixe est 0, qui est
1-périodique.

La fonction nulle n’admet donc pas de pointn -périodique pourn > 1 et a un unique point fixe.

2. (a) La fonction f est continue sur [0, 1
2
[ comme fonction affine. De même, f est continue

sur ]1
2
, 1]. Il reste à vérifier que f est continue en

1

2
.

On a

lim
x→ 1

2

−
f(x) = lim

x→ 1
2

−
2x = 2× 1

2
= 1 = f

(
1

2

)
et

lim
x→ 1

2

+
f(x) = lim

x→ 1
2

+
2(1− x) = 2×

(
1− 1

2

)
= 1 = f

(
1

2

)
.

Ainsi, lim
x→ 1

2

−
f(x) = lim

x→ 1
2

+
f(x) = f

(
1

2

)
, ce qui assure que f est continue en 1

2
et

finalement f est continue sur I. Le graphe de f est le suivant :

1/2 1

1

0
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(b) Comme le suggère l’énoncé, considérons x ∈ [1
8
, 1
4
].

On a alors f(x) = 2x ∈ [1
4
, 1
2
] donc f 2(x) = f(2x) = 4x ∈ [1

2
, 1] donc f 3(x) =

f(4x) = 2(1− 4x) = 2− 8x.

On a alors f 3(x) = x ⇔ 2− 8x = x ⇔ x =
2

9
qui est bien dans [1

8
, 1
4
].

On vérifie qu’on a bien f(2
9
) ̸= 2

9
et f 2(2

9
) ̸= 2

9
. En effet, f(2

9
) = 4

9
et f 2(2

9
) = f(4

9
) = 8

9

puis f 3(2
9
) = f(8

9
) = 2(1− 8

9
) = 2

9
donc

2

9
est un point 3 -périodique pour f.

Partie II : 5-périodicité n’implique pas 3-périodicité

1. Le graphe de f est le suivant :

1/4 1/2 3/4 1

1/4

1/2

3/4

1

0

2. On a f(0) =
1

2
, f 2(0) = f

(
1

2

)
=

3

4
, f 3(0) = f

(
3

4

)
=

1

4
, f 4(0) = f

(
1

4

)
= 1 et

f 5(0) = f(1) = 0 donc 0 est un point 5 -périodique pour f.

3. • Puisque f est continue et croissante sur [0, 1
4
], on a f([0, 1

4
]) = [f(0), f(1

4
)] = [1

2
, 1].

De même, puisque f est continue et décroissante sur [1
2
, 1], on a f 2([0, 1

4
]) = f([1

2
, 1]) =

[f(1), f(1
2
] = [0, 3

4
].

Enfin, on a de même f 3([0, 1
4
]) = f([0, 3

4
]) = f([0, 1

4
]) ∪ f([1

4
, 3
4
]) = [1

2
, 1] ∪ [1

4
, 1] donc

f 3

([
0,

1

4

])
=

[
1

4
, 1

]
.

• Pour les mêmes raisons, on a f 3([1
4
, 1
2
]) = f 2([3

4
, 1]) = f([0, 1

4
] d’où f 3

([
1

4
,
1

2

])
=

[
1

2
, 1

]
.

• Enfin, f 3([3
4
, 1]) = f 2([0, 1

4
]) = f([1

2
, 1]) d’où f 3

([
3

4
, 1

])
=

[
0,

3

4

]
.

• Si x ∈ [0, 1
4
] est 3-périodique, on a f 3(x) = x. Puisque f 3([0, 1

4
] = [1

4
, 1], la seule

possibilité est x =
1

4
. Or, f 3(1

4
) = 1

2
donc 1

4
n’est pas un point fixe de f 3, ce qui prouve

que f n’admet pas de point 3-périodique sur [0, 1
4
].

• De même, puisque f 3([1
4
, 1
2
]) = [1

2
, 1], si f admettait un point 3-pérodique dans [1

4
, 1
2
], ce

point serait nécessairement 1
2
mais f 3(1

2
) = 1 donc f n’admet pas de point 3-périodique

sur [1
4
, 1
2
].

• Enfin, puisque f 3([3
4
, 1]) = [0, 3

4
], si f admettait un point 3-pérodique dans [3

4
, 1], ce

point serait nécessairement 3
4
mais f 3(3

4
) = 0 donc f n’admet pas de point 3-périodique

sur [3
4
, 1].
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On en déduit que f n’admet aucun point 3 -pérodique dans l’un de ces intervalles.

4. Soient (x, y) ∈ [1
2
, 3
4
]2 avec x < y.

Puisque f est strictement décroissante sur [1
2
, 3
4
], on a

f

(
3

4

)
=

1

4
⩽ f(y) < f(x) ⩽

3

4
= f

(
1

2

)
.

Puisque f est strictement décroissante sur [1
4
, 3
4
], on a

f

(
3

4

)
=

1

4
⩽ f 2(x) < f 2(y) ⩽

1

4
= 1.

Enfin, puisque f est strictement décroissante sur [1
4
, 1], on a f 3(y) < f 3(x).

Ainsi, si x < y, alors f 3(x) < f 3(x), ce qui prouve que f 3 est strictement décroissante sur

[
1

2
,
3

4

]
.

Puisque x 7→ −x l’est également, on en déduit que la fonction g : x 7→ f 3(x) − x est
strictement décroissante sur [1

2
, 3
4
].

De plus, g(1
2
) = f 3(1

2
)− 1

2
= 1− 1

2
= 1

2
> 0 et g(3

4
) = f 3(3

4
)− 3

4
= 0− 3

4
= −3

4
< 0.

Puisque g est continue sur
[
1
2
, 3
4

]
comme composée d’applications continues et est stric-

tement décroissante sur
[
1
2
, 3
4

]
, on déduit du corollaire du théorème des valeurs in-

termédiaires qu’il existe un unique x0 ∈
[
1
2
, 3
4

]
tel que g(x0) = 0, i.e. f 3(x0) = x0.

Ainsi, f 3 admet un unique point fixe sur
[
1
2
, 3
4

]
.

Or, d’après la question précédente, f 3 n’admet aucun point fixe sur [0, 1] \
[
1
2
, 3
4

]
.

On en déduit que f 3 admet un unique point fixe sur I.

5. Puisque f : I −→ I est continue, on sait d’après la question 1.(a) de la Partie I que f
admet au moins un point fixe x ∈ I, i.e. f(x) = x. Ce point vérifie alors f 3(x) = x et est
donc nécessairement un point fixe de f 3.

Or, d’après la question précédente, f 3 admet un unique point fixe sur I. Ce point fixe est
donc nécessairement x, un point fixe de f, qui est donc 1-périodique. Or, si f admettait un
point 3-périodique, f 3 possèderait un autre point fixe, ce qui mettrait en défaut l’unicité
prouvée à la question précédente.

On en conclut que f n’admet pas de point 3 -périodique.

Partie III : Doublement de période

1. On a F (1
3
) = 2

3
+ f(1)

3
et F (2

3
) = 0. Puisque F est affine sur [1

3
, 2
3
], on a

∀x ∈
[
1

3
,
2

3

]
, F (x) = −(2 + f(1))

(
x− 2

3

)
.

De même, puisque F est affine sur [2
3
, 1], que F (2

3
) = 0 et que F (1) = 1

3
, on a

∀x ∈
[
2

3
, 1

]
, F (x) = x− 2

3
.

2. Puisque f : [0, 1] → [0, 1], pour tout x ∈ [0, 1
3
], on a f(3x) ∈ [0, 1] donc f(3x)

3
∈ [0, 1

3
] puis

F (x) = 2
3
+ f(3x)

3
∈ [2

3
, 1] ce qui prouve que F

([
0,

1

3

])
⊂

[
2

3
, 1

]
.
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Ensuite, puisque F est continue et strictement croissante (par construction) sur [2
3
, 1], on

a F
(
[2
3
, 1]

)
= [F (2

3
), F (1)] d’où F

([
2

3
, 1

])
=

[
0,

1

3

]
.

3. D’après la question précédente, pour tout x ∈ [0, 1
3
], on a F (x) ∈ [2

3
, 1] donc nécessairement

F (x) ̸= x.

De même, pour tout x ∈ [2
3
, 1], on a F (x) ∈ [0, 1

3
] donc nécessairement F (x) ̸= x.

Ainsi, si F admet un point fixe sur I, celui-ci se trouve nécessairement dans ]1
3
, 2
3
[.

Par construction, puisque F (1
3
) ⩾ 2

3
> 0, que F (2

3
) = 0 et que F est affine sur [1

3
, 2
3
], la

fonction F est strictement décroissante sur [1
3
, 2
3
] et il en est donc de même de g : x 7→

F (x)− x.

On a g(1
3
) = F (1

3
)− 1

3
⩾ 2

3
− 1

3
= 1

3
> 0 et g(2

3
) = F (2

3
)− 2

3
= −2

3
< 0.

Puisque la fonction g est continue et strictement décroissante sur [1
3
, 2
3
], on déduit du

corollaire du théorème des valeurs intermédiaires qu’il existe un unique réel p ∈]1
3
, 2
3
[ tel

que g(p) = 0, i.e. F (p) = p.

On a donc bien montré que F admet un unique point fixe p sur I avec p ∈
]
1

3
,
2

3

[
.

4. (a) On a montré en question 1 de cette partie que le cœfficient directeur de F sur le
segment [1

3
, 2
3
] est a = −(2 + f(1)). Puisque f(1) ⩾ 0, il est clair que a ⩽ −2.

(b) Puisque F est une fonction affine de cœfficient directeur a sur [1
3
, 2
3
], que p ∈ [1

3
, 2
3
]

et qu’on a supposé que pour tout n ∈ N, un ∈ [1
3
, 2
3
], on a pour tout n ∈ N,

|un+1 − p| = |F (un)− F (p)| = |a(un − p)| = |a||un − p|.

Or, d’après la question précédente, a ⩽ −2 donc |a| ⩾ 2 et on en déduit que

pour toutn ∈ N, |un+1 − p| ⩾ 2|un − p|.

(c) L’inégalité précédente permet d’obtenir par une récurrence immédiate que pour tout
n ∈ N, |un − p| ⩾ 2n|u0 − p|.
Puisque u0 ̸= p, on a |u0 − p| > 0 donc lim

n→+∞
2n|u0 − p| = +∞.

Par comparaison, on en déduit que lim
n→+∞

|un − p| = +∞.

Or, on a supposé que pour tout n ∈ N, un ∈ [1
3
, 2
3
] donc par inégalité triangulaire,

on a pour tout n ∈ N, |un − p| ⩽ |un|+ |p| ⩽ 2
3
+ 2

3
= 4

3
, ce qui contredit le fait que

lim
n→+∞

|un − p| = +∞.

(d) L’hypothèse selon laquelle pour tout n ∈ N, un ∈
]
1

3
,
2

3

[
étant absurde, on en déduit

qu’il existe un rang n0 ∈ N pour lequel un0 ∈ [0, 1] \
]
1

3
,
2

3

[
=

[
0,

1

3

]
∪
[
2

3
, 1

]
.

Or, d’après la question 2, on a F
([
0, 1

3

]
∪
[
2
3
, 1
])

= F ([0, 1
3
])∪F ([2

3
, 1]) = [2

3
, 1]∪[0, 1

3
].

Ainsi, l’ensemble
[
0, 1

3

]
∪
[
2
3
, 1
]
est stable par F donc puisque un0 ∈

[
0, 1

3

]
∪
[
2
3
, 1
]
, on

en déduit que pour tout n ⩾ n0, un ∈
[
0, 1

3

]
∪
[
2
3
, 1
]
, i.e. pour toutn ⩾ n0, un /∈

]
1

3
,
2

3

[
.

(e) Supposons par l’absurde que F admet un point périodique x ∈]1
3
, 2
3
[ tel que x ̸= p.

Notons N ∈ N∗ sa période.

Considérons la suite (un)n∈N définie par u0 = x et pour tout n ∈ N, un+1 = F (un).
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D’après les questions précédentes, il existe un rang n0 tel que pour tout n ⩾ n0, un /∈]
1
3
, 2
3

[
.

Puisque x est N -péridoque pour F, FN(x) = x, i.e. uN(x) = x et pour tout k ∈
N, ukN(x) = x ∈

]
1
3
, 2
3

[
, ce qui contredit le fait que pour tout n ⩾ n0, un /∈

]
1
3
, 2
3

[
.

On en conclut que F n’admet aucun point périodique dans

]
1

3
,
2

3

[
, mis à part son point fixe p.

5. (a) Puisque x ∈ [0, 1
3
], on a par définition F (x) =

2

3
+

f(3x)

3
∈
[
2

3
, 1

]
.

Ainsi, F 2(x) = F (F (x)) = F (x)− 2

3
=

f(3x)

3
∈
[
0,

1

3

]
.

Ensuite, F 3(x) = F

(
f(3x)

3

)
=

2

3
+

f
(
3× f(3x)

3

)
3

=
2

3
+

f 2(3x)

3
∈
[
2

3
, 1

]
.

Enfin, F 4(x) = F (F 3(x))− 2

3
=

f 2(3x)

3
.

(b) Montrons par récurrence que pour tout k ∈ N, F 2k(x) =
fk(3x)

3
et que F 2k+1(x) =

2

3
+

fk+1(3x)

3
.

•Initialisation : Pour k = 0, on a
f 0(3x)

3
=

3x

3
= x = F 0(x) et F 1(x) =

2

3
+
f 1(3x)

3
donc la propriété est vraie au rang k = 0.

•Hérédité : Soit k ∈ N fixé tel que F 2k(x) =
fk(3x)

3
et F 2k+1(x) =

2

3
+

fk+1(3x)

3
.

Montrons que F 2k+2(x) =
fk+1(3x)

3
et F 2k+3(x) =

2

3
+

fk+2(3x)

3
.

Puisque F 2k+1(x) ∈ [2
3
, 1], on a F 2k+2(x) = F (F 2k+1(x)) = F 2k+1(x)−2

3
=

fk+1(3x)

3
∈

[0, 1
3
] donc

F 2k+3(x) = F (F 2k+2(x)) =
2

3
+

f(3F 2k+2(x))

3
=

2

3
+

fk+2(3x)

3
,

ce qui prouve la propriété au rang k + 1.

On a donc bien montré par récurrence que

pour tout k ∈ N, F 2k(x) =
fk(3x)

3
etF 2k+1(x) =

2

3
+

fk+1(3x)

3
.

(c) On suppose que fn(x) = x et que fk(x) ̸= x pour tout k ∈ N∗ avec k < n.

D’après la question précédente, on a F 2n
(x
3

)
=

fn(x)

3
=

x

3
.

Il reste à montrer que pour tout k ∈ N∗ avec k < 2n, F k
(x
3

)
̸= x

3
.

Soit k ∈ J1, 2n− 1K.

• Si k est pair, on a F k
(x
3

)
=

f
k
2 (x)

3
̸= x

3
car

k

2
∈ J1, n− 1K donc f

k
2 (x) ̸= x.

• Supposons que k est impair. On a alors F k

([
0,

1

3

])
⊂

[
2

3
, 1

]
et

x

3
∈
[
0,

1

3

]
donc

on ne peut pas avoir F k
(x
3

)
=

x

3
.
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Ceci prouve bien que
x

3
est 2n -périodique pourF.

6. (a) Puisque x est un point périodique pour F qui n’est pas un point fixe de F, on sait
d’après la question 4.(e) que x ∈ [0, 1

3
] ∪ [2

3
, 1]. Notons N la période de x pour F.

Ainsi, on a FN(x) = x.

On sait d’après la question 2 que F

([
0,

1

3

])
⊂

[
2

3
, 1

]
et que F

([
2

3
, 1

])
=

[
0,

1

3

]
.

Ainsi, pour tout k ∈ N, F 2k

([
0,

1

3

])
⊂

[
0,

1

3

]
, F 2k+1

([
0,

1

3

])
⊂

[
2

3
, 1

]
, F 2k

([
2

3
, 1

])
⊂[

2

3
, 1

]
et F 2k+1

([
2

3
, 1

])
⊂

[
0,

1

3

]
.

Puisque x ∈ [0, 1
3
] ∪ [2

3
, 1], pour avoir FN(x) = x, il est donc nécessaire que

la périodeN dex soit paire.

(b) Comme dit dans la question précédente, x ∈ [0, 1
3
] ∪ [2

3
, 1].

Si x ∈ [0, 1
3
], il n’y a rien à faire.

Si x ∈ [2
3
, 1], puisque F

([
2

3
, 1

])
=

[
0,

1

3

]
, on a F (x) ∈ [0, 1

3
].

Ceci justifie que x ouF (x) appartient à

[
0,

1

3

]
.

(c) Puisque x ∈ [0, 1
3
] et que x est 2q-périodique pour F, on a d’après la question 5.(b),

x = F 2q(x) =
f q(3x)

3

d’où f q(3x) = 3x.

S’il existait k ∈ J1, q− 1K tel que fk(3x) = 3x, on aurait F 2k(x) =
fk(3x)

3
=

3x

3
= x

avec 2k ∈ J2, 2q − 2K, ce qui contredirait le fait que x est 2q-périodique pour F.

Ainsi, f q(3x) = 3x et pour tout k ∈ J1, q − 1K, fk(3x) ̸= 3x, ce qui assure que

3x est q -périodique pour f.

(d) On suppose que F (x) ∈ [0, 1
3
], i.e. x ∈ [2

3
, 1] d’après la question 6.(b).

Puisque F (x) ∈ [0, 1
3
], on a

x = F 2q(x) = F 2q−1(F (x)) =
2

3
+

f q(3F (x))

3

d’où F (x) = x− 2
3
=

f q(3F (x))

3
ou encore f q(3F (x)) = 3F (x).

S’il existait k ∈ J1, q − 1K tel que fk(3F (x)) = 3F (x), par le même calcul que ci-
dessus, on aurait F 2k(x) = x avec 2k ∈ J2, 2q − 2K, ce qui contredirait le fait que x
est 2q-périodique pour F.

Ainsi, f q(3F (x)) = 3F (x) et pour tout k ∈ J1, q − 1K, fk(3F (x)) ̸= 3F (x), ce qui

assure que 3F (x) est q -périodique pour f.

7. Soit n ∈ N∗.

• Supposons que f admette un point n-périodique. D’après la question 5.(c), la fonction
F admet alors un point 2n-périodique.
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• Supposons que F admette un point 2n-périodique. D’après la question 4.(e), celui-ci se
situe forcément dans [0, 1

3
] ou dans [2

3
, 1] et on a montré en question 6 que dans les deux

cas, la fonction f admettait alors un point n-périodique.

On en déduit que

f admet un pointn -périodique si et seulement siF admet un point 2n -périodique.

8. Reprenons la fonction f considérée dans la partie II et considérons sa fonction ≪ double≫F.

On a montré en question 2 de la partie II que f admettait un point 5-périodique, ce qui
permet d’affirmer d’après la question précédente que F admet un point 10-périodique.

En revanche, toujours d’après la question précédente, si F admettait un point 6-périodique,
alors f admettrait un point 3-périodique, ce qui est impossible d’après la question 5 de
la partie II.

On en déduit que la fonctionF admet un point 10 -périodique mais aucun point 6 -périodique.

Partie IV : Preuve du théorème

1. (a) On a K = {y} ⊂ f(J). Puisque y ∈ f(J), il existe x ∈ J tel que f(x) = y.

En considérant le segment réduit à un point L = {x} ⊂ J, on a bien f(L) = K.

(b) L’ensemble A est non vide (car il contient b) et est minoré par a par définition. En
tant qu’ensemble non vide et minoré de R, il admet une borne inférieure, notée v.

Montrons que v ∈ A.

Par caractérisation de la borne inférieure, il existe une suite (xn)n∈N à valeurs dans
A telle que lim

n→+∞
xn = v.

Puisque xn ∈ A pour tout n ∈ N, on a f(xn) = β pour tout n ∈ N.
Par ailleurs, f est continue sur I donc par caractérisation séquentielle de la conti-
nuité, on obtient

β = lim
n→+∞

f(xn) = f(v),

ce qui prouve que v ∈ A.

Ainsi, v = inf(A) et v ∈ A donc v = min(A).

(c) L’ensemble B est non vide (car il contient a) et est majoré par v donc il admet une
borne supérieure u (et on a nécessairement u ⩽ v).

De même qu’en question précédente, il existe une suite (xn)n∈N à valeurs dans B
telle que lim

n→+∞
xn = u et on déduit par caractérisation séquentielle de la limite que

α = lim
n→+∞

f(xn) = f(u)

donc u ∈ B.

Finalement, u = sup(B) et u ∈ B donc u = max(B).

(d) Posons L = [u, v] ⊂ [a, b] ⊂ J et montrons que f(L) = K = [α, β].

• Montrons que K ⊂ f(L).

Soit y ∈ K = [α, β] = [f(u), f(v)].

Puisque f est continue sur l’intervalle [u, v], d’après le théorème des valeurs in-
termédiaires, il existe x ∈ [u, v] = L tel que f(x) = y. Ainsi, y ∈ f(L), ce qui prouve
l’inclusion [α, β] ⊂ f(L).

• Montrons que f(L) ⊂ K = [α, β].

Soit x ∈ L = [u, v]. Montrons que f(x) ∈ [α, β].
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Si on avait f(x) < α, on aurait nécessairement x > u et α ∈ [f(x), f(v)] donc d’après
le théorème des valeurs intermédiaires, il existerait c ∈ [x, v] tel que f(c) = α. Or,
c ∈]u, v], ce qui contredirait la maximalité de u dans B. On a donc nécessairement
f(x) ⩾ α.

De même, si on avait f(x) > β, on aurait x < v et β ∈ [f(u), f(x)] donc il existerait
d ∈ [u, x] tel que f(d) = β avec d < v et d ∈ [a, b], ce qui contredirait la minimalité
de v dans A. On a donc nécessairement f(x) ⩽ β.

Ainsi, f(x) ∈ [α, β], ce qui prouve l’inclusion f(L) ⊂ K = [α, β].

On en conclut que f(L) = K avecL = [u, v].

2. Soit K = [α, β].

D’après le théorème des bornes atteintes, puisque f est continue sur le segment K, alors
f(K) est un segment, i.e. il existe (a, b) ∈ K2 tel que f(K) = [f(a), f(b)].

Puisque K ⊂ f(K), on a f(a) ⩽ α et f(b) ⩾ β.

Posons g : x 7→ f(x) − x. La fonction g est continue sur K comme somme de fonctions
continues sur K.

De plus, g(a) = f(a)− a ⩽ α− a ⩽ 0 (car a ∈ [α, β]) et g(b) = f(b)− b ⩾ β − b ⩾ 0 (car
b ∈ [α, β]).

D’après le théorème des valeurs intermédiaires, on en déduit qu’il existe x ∈ K tel que
g(x) = 0, i.e. f(x) = x.

Ainsi, f admet un point fixe dansK.

3. Par hypothèse, on a In ⊂ f(In−1), où In et In−1 sont des segments non vides inclus dans
I.

D’après la question 1, on en déduit qu’il existe un segment non vide Jn−1 inclus dans In−1

tel que f(Jn−1) = In.

De même, Jn−1 ⊂ In−1 ⊂ f(In−2) donc il existe un segment Jn−2 ⊂ In−2 tel que f(Jn−2) =
Jn−1.

En réitérant ce raisonnement, on obtient des segments non vides (Jk)0⩽k⩽n−1 tels que

∀k ∈ J0, n− 1K, Jk ⊂ Ik, ∀k ∈ J0, n− 2K, f(Jk) = Jk+1 et f(Jn−1) = In.

Si x0 = f 0(x0) ∈ J0, alors f(x0) ∈ f(J0) = J1, puis f
2(x0) ∈ f (J1) = J2 et on en déduit

que pour tout k ∈ J0, n− 1K, fk(x0) ∈ Jk.

4. Puisque x est 3-périodique pour f, x, f(x) et f 2(x) sont également 3-périodiques (et sont
deux à deux distincts).

• Supposons que x0 < x1 = f(x0) < x2 = f(x1) = f 2(x0). Alors f(x2) = f 3(x0) = x0.

Notons S1 = [x1, x2] et S2 = [x0, x1]. Puisque x0 < x1 < x2, notons que S1 ∩ S2 = {x1},
qui est un point 3-périodique pour f.

Puisque S1 est un segment et que f est continue sur S1, on sait d’après le théorème des
bornes atteintes que f(S1) est un segment. Par ailleurs, f(S1) contient f(x1) = x2 et
f(x2) = x0 donc [x0, x2] ⊂ f(S1).

En particulier, S2 = [x0, x1] ⊂ [x0, x2] ⊂ f(S1) donc S1 → S2 et S1 = [x1, x2] ⊂ f(S1)

donc S1 → S1.

De même, f(S2) est un segment qui contient f(x0) = x1 et f(x1) = x2 donc S1 = [x1, x2] ⊂
f(S2), i.e. S2 → S1.

On a donc bien S1 → S1 etS1 → S2 → S1.

• Supposons que x0 < x2 = f(x1) < x1 = f(x0).
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Posons S1 = [x0, x2] et S2 = [x2, x1]. Notons que S1 ∩ S2 = {x2}, qui est un point
3-périodique pour f.

Pour les mêmes raisons que précédemment, le segment f(S1) contient f(x0) = x1 et

f(x2) = x0 donc [x0, x1] ⊂ f(S1). En particulier S1 = [x0, x2] ⊂ f(S1), i.e. S1 → S1 et

S2 = [x2, x1] ⊂ f(S1) donc S1 → S2.

De même, le segment f(S2) contient f(x2) = x0 et f(x1) = x2 donc S1 = [x0, x2] ⊂ f(S2),

i.e. S2 → S1.

On retrouve encore S1 → S1 etS1 → S2 → S1.

• Considérons alors deux segments S1 et S2 inclus dans I ayant un seul point commun
(nécessairement 3-périodique pour f) tels que S1 → S1 et S1 → S2 → S1.

Puisque S1 ⊂ f(S1) et que f est continue sur le segment S1, on déduit de la question 2
que f admet un point fixe dans S1.

Par ailleurs, puisque S1 → S2 → S1, on sait d’après la question précédente qu’il existe
deux segments non vides J0 et J1 tels que

J0 ⊂ S1, J1 ⊂ S2, f(J0) = J1 et f(J1) = S1.

Ainsi, J0 ⊂ S1 = f 2(J0). D’après la question 2, on en déduit que f 2 admet un point fixe
α ∈ J0 ⊂ S1.

Si on avait f(α) = α, on aurait α ∈ f(J0) = J1 ⊂ S2 donc α ∈ S1 ∩S2. Or, l’unique point
dans S1 ∩ S2 est 3-périodique pour f donc ce ne peut être α (puisque f 2(α) = α).

Ainsi, on a f 2(α) = α et f(α) ̸= α, i.e. α est 2-périodique pour f.

On en déduit que f admet un point fixe et un point 2 -périodique.

5. On sait d’après la question précédente que f admet des points n-périodiques pour n ∈
J1, 3K.
Soit n ⩾ 4 fixé.

En échangeant les rôles de S1 et S2 par rapport à la question précédente, on a S2 → S2

et S2 → S1 → S2.

Ainsi, on peut obtenir une suite S1 → S2 → S2 → · · · → S2 → S1 avec n− 1 flèches.

En utilisant de nouveau la question 3, on montre qu’il existe des segments non vides
(Jk)0⩽k⩽n−1 tels que J0 ⊂ S1, pour tout k ∈ J1, n − 1K, Jk ⊂ S2, pour tout k ∈ J0, n −
2K, f(Jk) = Jk+1 et f(Jn−1) = S1.

Comme en question précédente, on a J0 ⊂ S1 = fn(J0) donc d’après la question 2, fn

admet un point fixe α dans J0 ⊂ S1.

S’il existe p ∈ J1, n − 1K tel que fp(α) = α, on aurait α ∈ fp(J0) = Jp ⊂ S2 donc
α ∈ S1 ∩ S2.

Avec les notations de la question précédente, on a alors α = x1 ou α = x2.

Ainsi, f(α), f 2(α) et f 3(α) prennent (dans un certain ordre) les trois valeurs différentes
x0, x1 et x2.

Or, puisque n ⩾ 4, n− 1 ⩾ 3 et pour tout p ∈ J1, n− 1K, fp(α) ∈ S2, ce qui est contradic-
toire puisqu’on ne peut avoir x0, x1 et x2 dans S2.

Ainsi, on a bien fn(α) = α et pour tout p ∈ J1, n− 1K, f p(α) ̸= α donc α est n-périodique
pour f.

On en conclut que f admet un pointn -périodique pour toutn ⩾ 1.

14


