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Exercice : Une suite récurrente

1. On a pour tout n > 1, u,11 = > 0 donc pour tout n > 2, u,, > 0.

sis

Par ailleurs, u; = a > 0 donc on a bien ‘un > Opour toutn > 1.‘

2. On a les équivalences suivantes :

2
U
(U )n>1 €8t constante < Vn > 1, upy = u, < Vn > 1, —~

\/_
ce qui équivaut a dire que pour tout n > 1,u, = 0 ou u, = /n.

u2

=u, < Vn > 1,u,(u,—v/n) =0

Or, ¢'il existait un n > 1 tel que u, = /0, on aurait u,,; = —~ = = /n puis

Vi

2
u n
1 : :
nt # \/n = u,y1 donc la suite ne serait pas constante.

u’l’l g _—
2T nrl Varl

Ainsi, la suite est constante si et seulement si pour tout n > 1,u,, = 0. En particulier,

ceci impose u; = a = 0 et dans ce cas, on a bien pour tout n > 1, u,, = 0.

On en déduit que |la suite (u,),>1 est constante si et seulement sia = 0.

3. Supposons qu’il existe [ € R tel que lir+n u, = [. Par opérations sur les limites, on
n—-+00

».
l= lim uyy = hm——lXO—O

n——400 n——4o00 \/_

On a donc bien montré que |si (u,),>1 converge, alors lim w, = 0.
n—-+o0o

4. Supposons que pour tout n = 1,u, > /n.

a

Puisque lim +/n = +o00, on obtient directement par comparaison que| lim wu, =
n—+o0 n—+00

+00.

En particulier, si u, > y/n pour tout n > 1, on a pour tout n > 1,u, > 0 et

Un+1 Up,

U, NZD

donc pour tout n > 1, u, 11 = uy,, ce qui prouve que | (uy,),>1 est croissante.

5. (a) Montrer par récurrence que pour tout n >k, u, < y/n.
elnitialisation : Pour n = k, on a bien par hypothese u; < V.

eHérédité : Soit n > k fixé. On suppose que u, < /n. Montrons que u, 1 <

vn + 1.

Puisque pour tout n > 1,u,, > O, on a0 < u, < +/ndoncu? < n eton a alors

Upy1 = \/_ \/_<\/_<\/n+

ce qui prouve la propriété au rang n + 1.

D’apres le principe de récurrence, on a bien | pour toutn > k, u, < v/n.




(b)

Pour tout n > k, on a
Upt1 — U :u—%—u —u, (1)
n+1 n VGE n n \/ﬁ
U
Or, pour tout n > k, — — 1 < 0 (car u, < /n) et u, > 0 donc U1 — u, < 0.

vn

On en déduit que | (uy, ),k est décroissante.

La suite (up)n>k est décroissante et minorée par 0. D’apres le théoreme de la limite
mononte, on en déduit que (u,),>; converge.

Or, d’apres la question 3, si la suite (u,),>1 converge, sa limite est nécessairement
0.

Ceci justifie que | (uy,)n>1 converge vers 0.

Montrons par récurrence que pour tout n > 1,u, > 0.
elnitialisation : On a u; = a > 0 par hypothese, donc la propriété est vraie au
rang n = 1.

eHérédité : Soit n > 1 fixé tel que u, > 0.
2

On a alors u,,1 = —= > 0, ce qui prouve la propriété au rang n + 1.

NG

On a bien montré par récurrence que ‘un > O pour toutn > 1.

Montrons 1’égalité voulue par récurrence sur n € N*,

Notons que pour tout n > 1,In(u,) est bien défini car u, > 0 d’apres la question
précédente.

elnitialisation : Pour n =1, on a

2ty - 225 BEED ) ),

ok+1
k=0

ot on a utilisé que la somme est nulle car vide et que a > 0. La propriété est donc
vraie au rang n = 1.

n—2
In(k +1
eHérédité : Soit n > 1 fixé. On suppose que In(u,) = 2" ! In(a)— 2"_22—11(2“—_'—1 )

k=0
.1 (k+1)
Montrons que In(t,;) = 2" In(a) — 2"~ 12 1 ijl :

On a

(i) = In (%)
zzmm@—%mm)

n—2
" e In(k+1) 2!
= 2"In(a) —2 15 Sl om In(n)
k=0

n—1
= 2"In(a) — 2"} Z —ln(k + 1),

9k+1
k=0

ce qui prouve la propriété au rang n + 1.



On a donc bien montré par récurrence que

n—2
. . . In(k + 1)
Vn € N* In(u,) = 2" 'In(a) — 2 QZ STESEE
k=0
n+1
In(n + 2
Pour tout n € N, on a v,41 — v, = Zwk—Zwk wnﬂz%}()donc

la suite (v, )nen €st croissante.

Soitn>1.0n a

n n—1 n
1 1 1 k—+1
—Uy, § 27 lm(1+=) = —§ 27 k=l [ ——
2U 1+k:1 H( +k> 2k:0wk+k:1 n( k )

n—1 n

= > 27"k + 1)+ ) 275 (In(k + 1) — In(k))
k=0 k=1

= > 27" (k) + ) 27 In(k 4+ 1) = > 275 ' n(k)
k=1 k=1 k=1

= > 27" In(k+1)
k=1

n
= g w, carwy =0
k=0

I A _1 - —k—1 1
d’ou Vn}l,’un—§vn,1+22 ln(l—i—E).

k=1

n
1
Montrons par récurrence que pour tout n € N, v, = Z 27%1n (1 + E) — W,

= 1
elnitialisation : Pour n = 0, on a 224“ In (1 + E) —w, = —wyg = 0 et vy =

k=1
0

E wy, = wo = 0 donc la propriété est vraie au rang n = 0.
k=0

a 1
eHérédité : Soit n € N fixé. Supposons que v, = Z 27 %1n (1 + E) — Wy,

n+1
1
Montrons que v,41 = Z 2 % 1n (1 + E) — Wpt1-



D’apres la question précédente, on a

1 n+1 1
Un+1 = ivn + Z 27+ 1n (1 + E)

k=1

222’“1( —) wn+§2kll( k)

& 1 1
= 2) 27" ' <1 + E) Tk 27" n(n 4 1) + 2" 2In (1 +

1
n+1

1 2
= S o Fn (145 ) =2 2 In(n+ 1) + 2720 | 2
k n+1
k=1
— 1
= > 27%m <1 + E) —27"2In(n+ 1)+ 2" %In(n+2) — 27" ?In(n + 1)
k=1
- 1
= > 27%m <1+E> — 27" n(n 4+ 1)+ 27" In(n +2) — 27" % In(n + 2)
k=1
. —k 1 n—1
= ) 2 ln<1+—>+2 1n(1+ >—wn+1
pt k n+1

ce qui prouve la propriété au rang n + 1.
D’apres le principe de récurrence, on a bien montré que

& 1
VnEN,vn:Zlen(l—l—E) —w
k=1

(d) Soit n € N*.

- 1 1 - 1 1
D’une part, on a Z2‘k In (1 + E) = 5111(2) + ZZ"“ In <1 + E) > 3 In(2) car
k=1

1
pour tout k € [2,n],27%In <1 + E) > 0.

1
D’autre part, pour tout k € [1,n],In (1 + E) < In(2) donc

n

iQ‘kln (1+%> < ln(2)212—1k zln(2)x%x11%(%;n = In(2) (1 _ (

On obtient donc

1 n
Vn € N, 3 In(2) < 27 In <1 + —) < In(2).
1

(e) Pour tout n € N,w, > 0 donc

22k1n<1+ )—wn Zﬂln(u ) In(2).



(b)

Ainsi, la suite (v,)nen est majorée par In(2). Or, d’apres la question 7.(a), elle est
croissante. D’apres le théoreme de la limite monotone, on en déduit que la suite
(Un)nen converge vers une limite notée V.

De plus, la question précédente permet d’affirmer que
L1
Vn e N ,§IH(2) —w, < v, <In(2) — w,.

. , . . In(n+1)
Or, par croissances comparées, lim w, = lim ———= =
n—+oo n——+o0 on+l

En passant a la limite dans les inégalités ci-dessus, on obtient donc bien

Raisonnons par double implication.

e Supposons que (u,),>1 converge. D’apres la question 3, on a alors hrf u, = 0. Par
n—-+00

définition de la convergence vers 0 (avec € = 1), et puisque pour tout n > 1,u, > 0,
il existe un rang ng € N tel que pour tout n > ny,0 < u, < 3 < 1.

En particulier, il existe bien un entier k > 2 tel que u, < 1.
e Réciproquement, supposons qu’il existe un entier £ > 2 tel que up < 1. Puisque
k}?,onaﬂ}ﬂ>1doneuk<\/ﬁ

D’apres la question 5, cela implique que lim wu, = 0.
n——+o0o

On a donc bien montré par double implication que

(un)n>1 converge si et seulement s’il existe k > 2 tel queuy < 1.

On a les équivalences suivantes :

(Un)n>1 converge < 3

n
< dn

21 (k
& In>22"'In(a) < 2" ZZ n2k:—1 (question 6.(b))

¢

dn > 2,2In(a) < Zwk

dn > 2,2In(a) < v,
dng € N, 21n(a) < vy,

2In(a) < supwv, car (v,)nen est croissante et majorée
neN

2In(a) <V,

T ¢ ¢

. . . v
ce qui prouve que | (uy,),>1 converge si et seulement sia < ez .

D’apres les questions 4 et 5, on sait que s'il existe un entier k tel que u, < vk, alors

lirf u, = 0 et que dans le cas contraire (i.e. pour tout entier n,u, > \/n), alors
n—-+0oo

lim w, = +oo.
n—-+o0o

En prenant la négation de 1’équivalence montrée en question précédente, on a donc

) ) ) ) v
bien | lim wu, = +oosi et seulement sia > e2.
n—4o00




9. D’apres la question 7.(e), on sait que
In(2) In(2)
2

<V <In(2) < —;

Vo In(2
<§<—n§)®\4/§<6‘2/<\/§.

e Si|a < V2| onaalorsa < e et ceci implique d’apres la question 8.(b) que lir+n Uy, = 0.
n—-+0oo

eSila> V2| alorsa > e et cec implique d’apres la question précédente que lilf Uy, = +00.
n—-+0oo

Probléme : Théoreme de Charkovski

Partie I : Premiers exemples

1. (a) Posons pour tout x € I,g(x) = f(x) — x. La fonction g est continue sur / comme
somme de fonctions continues sur I.

Puisque f est a valeurs dans I = [0,1], on a g(0) = f(0) > 0et g(1) = f(1) —1<0
donc 0 € [g(1), g(0)].

D’apres le théoreme des valeurs intermédiaires, on en déduit qu’il existe x € [0, 1] tel
que g(x) =0, i.e. f(x) = z. Ainsi, ‘la fonction f admet au moins un point fixe sur /. ‘

(b) Si f est la fonction nulle sur I, le seul point fixe de f sur I est 0. De plus, pour
tout n € N* f" est encore la fonction nulle dont le seul point fixe est 0, qui est
1-périodique.

’La fonction nulle n’admet donc pas de point n-périodique pourn > 1et a un unique point fixe.

2. (a) La fonction f est continue sur [0, %[ comme fonction affine. De méme, f est continue

sur |1, 1]. Il reste a vérifier que f est continue en 5

On a 1 1
lim f(x):lim233:2><—:1:f(_>
x%%_ x%%_ 2 2
et
lim f(z)= lim 2(1—2)=2x (1—=]=1=f(=].
el g 2 2

1
Ainsi, lim f(r) = lim f(z) = f (5) , ce qui assure que f est continue en i et

2
z—1 z—it

finalement ‘ f est continue sur . ‘ Le graphe de f est le suivant :

2

0 1/2 1



1)
!

(b) Comme le suggere 1’énoncé, considérons z € |
On a alors f(z) = 2z € [3,1] donc f?(x)
f(4z) =2(1 — 4z) = 2 — 8.

=

(2x) = 4z € [5,1] donc f3(z) =

5l

On vérifie qu'on a bien f(2) # 2 et f2(2) # 2. Eneffet, f(2) = et f2(3) = f(5) =5

. 2
Onaalors f3(r)=r&2-8r=z& 1= 9 qui est bien dans |

2
puis fg(g) = f(%) =2(1- g) = % donc 5 est un point 3 -périodique pour f.

Partie II : 5-périodicité n’implique pas 3-périodicité

1. Le graphe de f est le suivant :

2 Ona f(0) = 5./%0) = J (%) ~ 2P0 =1 (§) ~ L) = g @ ~ et

f3(0) = f(1) = 0 donc ‘Oest un point 5-périodique pour f. ‘

3. @ Puisque f est continue et croissante sur [0,1], on a f([0,1]) = [£(0), f(3)] = [3.1].
De méme, puisque f est continue et décroissante sur [%,
[F(1), f(5] = [0, 3]:

Enfin, on a de meme (00, 41) = £(10.2) = (10,21 U £(1%,2) = [2.1] U [3,1] donc

() -]

e Pour les mémes raisons, on a f3([1, 1]) = f2([2,1]) = f([0, 1] dou| f? ([1 1]) = F 1] .

o B, (1) = (0.3 = 74 1) won | 7 (| F.1] ) = [0.5].

e Si z € [0,1] est 3-périodique, on a f*(z) = x. Puisque f3([0,7] = [§,1], la seule

1
4

que f n’admet pas de point 3-périodique sur [0, 1.

1
possibilité est x = 1 Or, f3(3) = 3 donc § n'est pas un point fixe de f3, ce qui prouve

e De méme, puisque f3([, 3]) = [3,1], si f admettait un point 3-pérodique dans [, 1], ce
point serait nécessairement % mais f3(%) = 1 donc f n’admet pas de point 3-périodique
sur [1, 3.
e Enfin, puisque f3([%, 1]) = [0, i—i], si f admettait un point 3-pérodique dans [%, 1], ce
point serait nécessairement % mais f3 (%) = 0 donc f n’admet pas de point 3-périodique
sur [3,1].

4



On en déduit que ‘ fn’admet aucun point 3 -pérodique dans 1'un de ces intervalles.

4. Soient (z,y) € [3,3]* avec z < y.

Puisque [ est strictement décroissante sur [%, %], on a

3 3 1
1(3)-i<fm<so<i-1(3)
Puisque f est strictement décroissante sur [i, %], on a
3 1 1
e g 2 2 < Z=1.
1(3)-i<ro<rws;

Enfin, puisque f est strictement décroissante sur [1,1], on a f3(y) < f*(z).

13
Ainsi, si x < y, alors f3(z) < f3(z), ce qui prouve que | f* est strictement décroissante sur {5, ﬂ )

Puisque x — —x l'est également, on en déduit que la fonction g : x — f3(x) — z est
L 3]

strictement décroissante sur [— =
1 1 3 3 3 3 3

2014
De plus, g(3) = f*(3) —3=1—
Puisque g est continue sur [%, %] comme composée d’applications continues et est stric-
tement décroissante sur [%,%], on déduit du corollaire du théoreme des valeurs in-
termédiaires qu’il existe un unique zy € [%,%] tel que g(xg) = 0, ie. f3(xy) = 0.
Ainsi, f3 admet un unique point fixe sur [%,% .
Or, d’aprés la question précédente, f* n’admet aucun point fixe sur [0,1]\ [3,3] .

On en déduit que | 2 admet un unique point fixe sur I.

5. Puisque f : I — I est continue, on sait d’apres la question 1.(a) de la Partie I que f

admet au moins un point fixe z € I, i.e. f(x) = x. Ce point vérifie alors f3(x) = z et est
donc nécessairement un point fixe de f3.
Or, d’apres la question précédente, f2 admet un unique point fixe sur I. Ce point fixe est
donc nécessairement x, un point fixe de f, qui est donc 1-périodique. Or, si f admettait un
point 3-périodique, f3 posséderait un autre point fixe, ce qui mettrait en défaut I'unicité
prouvée a la question précédente.

On en conclut que ‘ fn’admet pas de point 3 -périodique. ‘

Partie III : Doublement de période

1. Ona F(3) =2+ % et F(%) = 0. Puisque F est affine sur [3,2], on a

1
3

Vi € E %1 F(z) = —(24 £(1)) (x - ;) |

De méme, puisque F est affine sur [%, 1], que F(%) =0et que F(1) =

2 2
Vo € [5,1] ,F(w):x—g.

2. Puisque f : [0,1] — [0, 1], pour tout « € [0, 3], on a f(3z) € [0,1] donc 162) < 10, 5] puis

3
1 2
F(z) = % + f(g’x) e [%, 1] ce qui prouve que | F' ({O, 5]) C {5’ 1] .




4.

Ensuite, puisque F' est continue et strictement croissante (par construction) sur [2 1], on

A B

D’apres la question précédente, pour tout € [0, 3], on a F'(z) € [2, 1] donc nécessairement

F(x) # .

De méme, pour tout z € [3,1], on a F(x) € [0, 3] donc nécessairement F(z) # .

Ainsi, si F' admet un point fixe sur ] celui-ci se trouve nécessairement dans ]%, %[

Par construction, puisque F(3) > 2 > 0, que F(3) = 0 et que F est affine sur [3, 2], la
fonction F' est strictement decrmssante sur [:1,), %] et il en est donc de méme de g : z +—
F(z) — .

Onag(z)=FG)—3>22—3=3>0ctg(3)=F(3)-2=-2<0.
Puisque la fonction ¢ est continue et strictement décroissante sur [%, 2], on déduit du

373
corollaire du théoreme des valeurs intermédiaires qu’il existe un unique réel p €] tel

que g(p) =0, i.e. F(p) = p.

373[

1
On a donc bien montré que | F'admet un unique point fixe psur [ avecp € } 53 [

(a) On a montré en question 1 de cette partie que le coefficient directeur de F' sur le

segment [, 2] est a = —(2+ f(1)). Puisque f(1) > 0, il est clair que
(b) Puisque F est une fonction affine de coefficient directeur a sur [3, 2], que p € [% 2]
et qu’on a supposé que pour tout n € N, u,, € [3, 3] on a pour tout n € N,

|tns1 = pl = [F(un) = F(p)| = |a(un = p)| = lallun — pl.

Or, d’apres la question précédente, a < —2 donc |a| > 2 et on en déduit que

pour toutn € N, |u,41 — p| = 2|u, — p|.

(c¢) L’inégalité précédente permet d’obtenir par une récurrence immédiate que pour tout
n €N, |u, — p| 2 2"[uo — p|.
Puisque ug # p, on a |ug — p| > 0 donc lim 2"|ug — p| = 00
n—-+o0o

Par comparaison, on en déduit que | lim |u, — p| =
n—-+00

Or, on a supposé que pour tout n € N,u, € | ,%] donc par inégalité triangulaire,
on a pour tout n € N, [u, — p| < |un| + |p| < 3 + 3 = 3, ce qui contredit le fait que
lim |u, —p| =

W=

n—-+o0o
12
(d) L’hypothese selon laquelle pour tout n € N, u,, € 33 [ étant absurde, on en déduit
— 12 1 2
qu'il existe un rang ny € N pour lequel u,, € [0,1] \ 33| = 0, 3 U 3’ 1.
Or, d’apres la question 2, on a F' ([O, %} U [%, 1}) = F(|0, %])UF([% 1]) = [%7 1jujo, %]
Ainsi, 'ensemble [O, %} U [%, 1} est stable par F’ donc puisque u,, € [0, %} U [%, 1] , on

en déduit que pour tout n > ng, u, € [O, %}U[%, 1} ,1.e.|pour toutn = ng, u, ¢ ] 33 [

(e) Supposons par I'absurde que F' admet un point périodique x E}%, %[ tel que x # p.
Notons N € N* sa période.
Considérons la suite (uy,),en définie par ug = x et pour tout n € N, u, 1 = F(uy,).



D’apres les questions précédentes, il existe un rang ng tel que pour tout n > ng, u,, ¢
12

J3:3

Puisque x est N-péridoque pour F, F¥(z) = z, i.e. uy(z) = x et pour tout k €

N,upn(x) = € } 1 2[, ce qui contredit le fait que pour tout n > ng, u, ¢ }%, Z[.

373
) . s 12 N .
On en conclut que | F ' n’admet aucun point périodique dans 33| mis a part son point fixe p.

2
Puisque z € [0, 5], on a par définition | F(z) = 3 +

3 3’
2 1
Ainsi, | F?(x) = F(F(z)) = F(r) — = = /(32) € (0,-].
3 3 3
f(32)
_ fBx)\ 2 (3 X 73 ) 2 f2(3x)| _[2
Ensuite, | F3(z) = F [ 252 ) = = —Z ‘9
nsuite, | () ( 3 37 3 373 S |3
2 2
Enfin, | F'(2) = F(F*(a)) - - = / (33:”)
. 2% f*(3) 2k+1
Montrons par récurrence que pour tout k € N, F**(z) = 3 et que F#*(x) =
2 fk-i—l (3ZE)
3 N 3 . )
2
elnitialisation : Pour £ = 0, on a /7 (82) _ 3T r=F%z)et F'(z) ==+ J (32)

3 3 3

donc la propriété est vraie au rang k = 0.
k(3 9 k+1(g
eHérédité : Soit k € N fixé tel que F2(z) = @ et FH1(z) = 2 f 3( z)
fk+l(3l’) o 9 fk+2<31')
=2 ¢t F +3 = — —_
3 (W=35+"73
Puisque F4+(z) € [2,1),ona F#+2(2) = F(F\(2) = F*+(z)

3
[0, 3] donc

Montrons que F?*2(x)

2 _ 3
3 3

2 fBF*(x) 2 fF2(3z)
F2k+3 — F F2k+2 —— — _
() = PF**2(2)) = = + L5 e i 2%
ce qui prouve la propriété au rang k + 1.
On a donc bien montré par récurrence que
k 3 9 k+1 3
S x)ethk“(x):——i—f ( 95)

pour tout k € N, F?(z) = — 3 3

On suppose que f*(z) = z et que f¥(x) # x pour tout k € N* avec k < n.
:z:) fMx) oz
3/ 3 3
Il reste & montrer que pour tout k € N* avec k < 2n, F* (%) =+
Soit & € [1,2n — 1].

D’apres la question précédente, on a F?" <

r
3

g) = fzi)fx) +# % car g € [1,n— 1] donc f2(z) # =

1 2 1
e Supposons que k est impair. On a alors F* ({0, 5}) - lg, 1} et g € [0, 5} donc

e Si k est pair, onaF’“(

on ne peut pas avoir F* <§> =3

10



x
Ceci prouve bien que 3 est 2n -périodique pour F.

6. (a) Puisque z est un point périodique pour F' qui n’est pas un point fixe de F, on sait
d’apres la question 4.(e) que = € [0,3] U [3,1]. Notons N la période de x pour F.
Ainsi, on a FN(z) = z.

1 2 2 1
On sait d’apres la question 2 que F ({0, 5} ) C {5, 1} et que F' ( [g, 1]) = [0, 5} :

1 1
Ainsi, pour tout k € N, F?* ([0,§]> C [0,51 , 2kl ([0,%]) C [g,l} | F2k ([g,l]) C
2 2 1
21l ot pRr (124 |
51 e ([51]) <o

Puisque = € [0, 5] U [2, 1], pour avoir FN(z) = z, il est donc nécessaire que

3

‘la période N de x soit paire. ‘

(b) Comme dit dans la question précédente, z € [0, 5] U [2,1].

Siz €[0,3],iln’y arien  faire.

2 1
Si z € [2,1], puisque F ([§,1]> = {O, 5} ,ona F(x) e |0,5].

1
Ceci justifie que |z ou F'(z) appartient a {O, 5] )

(¢) Puisque z € [0, %] et que z est 2¢-périodique pour F, on a d’apres la question 5.(b),

_ (30

r = F?(z) 3

d’ou f9(3x) = 3z.

k
S’il existait k € [1,q— 1] tel que f*(3x) = 3z, on aurait F*(z) = / (?)Sx) = 3%

avec 2k € [2,2q — 2], ce qui contredirait le fait que z est 2¢-périodique pour F.
Ainsi, f9(3z) = 3z et pour tout k € [1,q — 1], f¥(3z) # 3z, ce qui assure que
’ 3z est ¢ -périodique pour f. ‘

=X

(d) On suppose que F(z) € [0, 5], i.e. z € [2,1] d’apres la question 6.(b).
Puisque F(z) € [0,3], on a
2 ['BF(z))

r=F*(z) = F* ' (F(z)) = 3T T3

13F
d'ou F(z) =2 —2 = w ou encore f9(3F(x)) = 3F(x).
S'il existait k € [1,q — 1] tel que f*(3F(z)) = 3F(x), par le méme calcul que ci-
dessus, on aurait F?*(z) = z avec 2k € [2,2q — 2], ce qui contredirait le fait que x
est 2¢g-périodique pour F.
Ainsi, f9(3F(z)) = 3F(x) et pour tout k € [1,q — 1], f*(3F(x)) # 3F(z), ce qui

assure que | 3F(x) est ¢ -périodique pour f.

7. Soit n € N*,

e Supposons que f admette un point n-périodique. D’apres la question 5.(c), la fonction
F" admet alors un point 2n-périodique.
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e Supposons que F' admette un point 2n-périodique. D’apres la question 4.(e), celui-ci se
situe forcément dans [0, 3] ou dans [2, 1] et on a montré en question 6 que dans les deux

cas, la fonction f admettait alors un point n-périodique.
On en déduit que

‘ f admet un point n -périodique si et seulement si F'admet un point 2n -périodique.

8. Reprenons la fonction f considérée dans la partie II et considérons sa fonction < double > F.
On a montré en question 2 de la partie II que f admettait un point 5-périodique, ce qui
permet d’affirmer d’apres la question précédente que F' admet un point 10-périodique.
En revanche, toujours d’apres la question précédente, si F' admettait un point 6-périodique,
alors f admettrait un point 3-périodique, ce qui est impossible d’apres la question 5 de
la partie II.

On en déduit que‘ la fonction F'admet un point 10 -périodique mais aucun point 6 -périodique.

Partie IV : Preuve du théoréme

1. (a) Ona K ={y} C f(J). Puisque y € f(J), il existe z € J tel que f(x) =v.
En considérant le segment réduit & un point L = {z} C J, on a bien | f(L) = K.

(b) L’ensemble A est non vide (car il contient b) et est minoré par a par définition. En
tant qu’ensemble non vide et minoré de R, il admet une borne inférieure, notée v.
Montrons que v € A.

Par caractérisation de la borne inférieure, il existe une suite (z,),en & valeurs dans

A telle que lim z, =v.
n—-+o0o

Puisque z,, € A pour tout n € N, on a f(z,) = 8 pour tout n € N.
Par ailleurs, f est continue sur I donc par caractérisation séquentielle de la conti-
nuité, on obtient

p= lim f(z,) = f(v),

n—s+o0
ce qui prouve que v € A.
Ainsi, v = inf(A) et v € A donc |v = min(A).
(c) L’ensemble B est non vide (car il contient a) et est majoré par v donc il admet une
borne supérieure u (et on a nécessairement u < v).

De méme qu’en question précédente, il existe une suite (z,),eny & valeurs dans B

telle que lim x, = u et on déduit par caractérisation séquentielle de la limite que
n—-+00

o= lim fza) = f(u)

n—-+4o0o

donc u € B.

Finalement, u = sup(B) et u € B donc |u = max(DB).
(d) Posons L = [u,v] C [a,b] C J et montrons que f(L) = K = [«, ]

e Montrons que K C f(L).

Soit y € K = [a, 8] = [/ (u), /(0)].

Puisque f est continue sur lintervalle [u,v], d’aprés le théoreme des valeurs in-

termédiaires, il existe x € [u,v] = L tel que f(x) = y. Ainsi, y € f(L), ce qui prouve

l'inclusion [«, 8] C f(L).

e Montrons que f(L) C K = [«, f].

Soit x € L = [u,v]. Montrons que f(z) € [«, 5].
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Si on avait f(x) < «, on aurait nécessairement © > u et o € [f(x), f(v)] donc d’apres
le théoreme des valeurs intermédiaires, il existerait ¢ € [z, v] tel que f(c) = a. Or,
¢ €|u,v], ce qui contredirait la maximalité de u dans B. On a donc nécessairement
f(z) = a.

De méme, si on avait f(x) > (, on aurait z < v et 8 € [f(u), f(x)] donc il existerait
d € [u,x] tel que f(d) = 8 avec d < v et d € [a,b], ce qui contredirait la minimalité
de v dans A. On a donc nécessairement f(z) < f.

Ainsi, f(z) € [a, f], ce qui prouve l'inclusion f(L) C K = [«, f].

On en conclut que | f(L) = K avec L = [u, v].

2. Soit K = [a, f].
D’apres le théoreme des bornes atteintes, puisque f est continue sur le segment K, alors
f(K) est un segment, i.e. il existe (a,b) € K? tel que f(K) = [f(a), f(b)].
Puisque K C f(K), on a f(a) < a et f(b) > .
Posons g : © — f(x) — x. La fonction g est continue sur K comme somme de fonctions
continues sur K.
De plus, g(a) = f(a) —a < a—a <0 (car a € [a, 5]) et g(b) = f(b) —b>F—b >0 (car
b€ o, 5]).
D’apres le théoreme des valeurs intermédiaires, on en déduit qu’il existe x € K tel que
g(x) =0, ie. f(z)==x.
‘Ainsi, f admet un point fixe dans K ‘

3. Par hypothese, on a I,, C f([,-1), ou I,, et I,,_; sont des segments non vides inclus dans
I.
D’apres la question 1, on en déduit qu’il existe un segment non vide J,,_; inclus dans I,,_;
tel que f(J,—1) = I,.
De méme, J, 1 C I,_1 C f(I,_2) donc il existe un segment J,,_o C I, tel que f(J,_2) =
Jn_1.
En réitérant ce raisonnement, on obtient des segments non vides (Ji)o<k<n_1 tels que

Vk € [[O,TL — 1]], Jp C I, Vk € [[O,n — 2]], f(Jk) = Jri1 et f(Jn—l) =1I,.

Si zo = fO(x0) € Jo, alors f(z0) € f(Jo) = Ju, puis f3(z¢) € fJ1) = Jo et on en déduit
que | pour tout k € [0,n — 1], f*(zo) € J;.

4. Puisque x est 3-périodique pour f, z, f(z) et f?(x) sont également 3-périodiques (et sont
deux a deux distincts).
e Supposons que xy < 1 = f(xo) < xg = f(21) = f*(w0). Alors f(22) = f*(w0) = 0.
Notons S; = [x1, 25 et Sy = [xg, 21]. Puisque ¢y < 1 < x, notons que S; NSy = {x;},
qui est un point 3-périodique pour f.
Puisque S; est un segment et que f est continue sur Sy, on sait d’apres le théoreme des
bornes atteintes que f(S;) est un segment. Par ailleurs, f(S;) contient f(z1) = x2 et

f(z2) = zo donc [xg, xo] C f(S1).
En particulier, Sy = [zo, 21] C [z0,22] C f(S1) donc et S1 = [x1,22] C f(S1)
o

De méme, f(S3) est un segment qui contient f(x¢) = z1 et f(x1) = x9 donc Sy = [z, x9] C

f(2), ice
On a donc bien‘Sl — S1etS; — Sy — Sl.‘
e Supposons que zg < T = f(21) < 11 = f(x0).
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Posons S; = [zg,xs] et Sy = [z2,71]. Notons que S; N Sy = {x2}, qui est un point
3-périodique pour f.
Pour les mémes raisons que précédemment, le segment f(S;) contient f(xg) = =1 et

f(z2) = xo donc [z, x1] C f(S1). En particulier S; = [zg, 22] C f(S1), i.e. et
Sy = [xg, 1] C f(S1) donc

De méme, le segment f(S3) contient f(z3) = xg et f(x1) = x9 donc Sy = [xg, 23] C f(S2),

On retrouve encore ‘Sl — SietS; — Sy — Sl.‘

e Considérons alors deux segments S et Sy inclus dans I ayant un seul point commun
(nécessairement 3-périodique pour f) tels que S; — S et S; — Sy — 5.

Puisque S; C f(S1) et que f est continue sur le segment S;, on déduit de la question 2
que f admet un point fixe dans S;.

Par ailleurs, puisque S; — S — 57, on sait d’apres la question précédente qu’il existe
deux segments non vides Jy et J; tels que

Jo C Sl, Jl C SQ,f(Jo) = Jl et f(Jl) = Sl-

Ainsi, Jy C S; = f2(Jy). D’apres la question 2, on en déduit que f? admet un point fixe
a € Jy C 5.

Sion avait f(o) = a, on aurait o € f(Jy) = J1 C Sy donc o € S1N S, Or, 'unique point
dans S; NSy est 3-périodique pour f donc ce ne peut étre a (puisque f2(a) = a).

Ainsi, on a f?(a) = a et f(a) # a, i.e. a est 2-périodique pour f.

On en déduit que ‘ fadmet un point fixe et un point 2 -périodique. ‘

. On sait d’apres la question précédente que f admet des points n-périodiques pour n €
I1, 3].

Soit n > 4 fixé.

En échangeant les roles de S; et Sy par rapport a la question précédente, on a Sy — S
et Sy — 51 — 9.

Ainsi, on peut obtenir une suite S; — Sy — Sy — -+ — Sy — S; avec n — 1 fleches.

En utilisant de nouveau la question 3, on montre qu’il existe des segments non vides
(Ji)o<k<n—1 tels que Jy C Sy, pour tout k € [1,n — 1], J, C Ss, pour tout k € [0,n —
2]], f(Jk) == Jk+1 et f(Jn_l) = Sl.

Comme en question précédente, on a Jy C S; = f™(Jy) donc d’apres la question 2, f"
admet un point fixe o dans Jy C 5.

Sl existe p € [1,n — 1] tel que fP(a) = «, on aurait o € fP(Jy) = J, C Sy donc
a € S;1NS,.

Avec les notations de la question précédente, on a alors v = 1 ou a = 5.

Ainsi, f(a), f2(a) et f3(«) prennent (dans un certain ordre) les trois valeurs différentes
Lo, x1 €t xo.

Or, puisque n > 4,n— 1 > 3 et pour tout p € [1,n — 1], fP(a) € Sa, ce qui est contradic-
toire puisqu’on ne peut avoir zg, 1 et 9 dans Ss.

Ainsi, on a bien f"(a) = « et pour tout p € [1,n— 1], f?(a) # a donc « est n-périodique
pour f.

On en conclut que ‘ fadmet un point n-périodique pour toutn > 1. ‘
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