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Probleme 1 : Théoreme de Darboux

Le but de ce probleme est de montrer le théoreme de Darboux : si f : I — R est dérivable,
alors la fonction f’ vérifie le théoreme des valeurs intermédiaires (méme si elle n’est pas continue
sur ), & savoir : pour tout (a,b) € I? avec a < b pour tout y entre f'(a) et f'(b), il existe
c € [a,b] tel que f'(c) =y.

Soient (a,b) € I? avec a < b. Soit y entre f'(a) et f'(b).

On considere les fonctions

¢ :la,b] — R Y a,b] — R
@)= fla) et @) = 1) .

T —_ = 17 x —
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1. (a) Montrer que les fonctions ¢ et ¢» peuvent étre prolongées par continuité sur [a, b].
On note ¢ et ¥ leurs prolongements respectifs.

(b) Montrer que $([a,b]) et ¥([a,b]) sont des intervalles non disjoints, i.e.
@(la,b]) N)([a,0]) # 0.

(¢) En déduire que @([a,b]) U1b([a,b]) est un intervalle (on pourra montrer au préalable
que I'union de deux intervalles non disjoints est un intervalle).

. Montrer que y € @([a, b)) U([a,b)).
. On suppose dans cette question que y € ¢([a, b)).

w N

(a) Montrer que si y = ¢(a), alors y = f'(a).
(b) Justifier que si y € ¢(]a, b]), alors il existe ¢ €]a, b] tel que y = f'(c).

W

. On suppose dans cette question que y € @([a, b)).

(a) Montrer que si y = 9 (b), alors y = f'(b).
(b) Justifier que si y € ¥([a, b)), alors il existe ¢ €]a, b] tel que y = f'(c).

5. Conclure.



Probléme 2 : Méthode de Newton

L’objectif de ce probleme est de montrer la convergence de la méthode de Newton, dont le but
est d’approcher I'unique point d’annulation d’une fonction dans un intervalle donné.
Autrement dit, si f est définie sur un intervalle I sur lequel la fonction f s’annule en un unique

point ¢, on cherche a construire une suite (¢, )nen a valeurs dans [ telle que lim ¢, = c.
n—-+o0o

Partie I : Formules de Taylor

Soit n € N. Soient a et b deux réels avec a < b. Soit xy € [a, b] un réel fixé.
Dans toute cette partie, on considere une fonction f : [a,b] — R de classe C"™! sur [a,b]. On
rappelle que pour tout k € [0,n + 1], f*) désigne la dérivée k-eme de f.

1. Montrer que pour tout = € [a,b], f(x) = f(z0) +/ f'(t)dt.

2. En déduire que pour tout x € [a, b],

n k) r p(ntD) (4
f(z) = E fk—ﬁx())(:c—xo)k—l—/ f—'()(:v—t)"dt (Formule de Taylor avec reste intégral)
! n!
k=0 *o

Indication : on pourra procéder par récurrence sur l'entier naturel n.

3. Justifier qu'il existe un réel positif M tel que pour tout t € [a, b], | f™+D(¢)| < M.
4. En déduire que

ol M|z — x|t f e s
Vo € [a,bl, |f(x) — T(x — Tp) ECES (Inégalité de Taylor-Lagrange)
! n !
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Partie II : Principe de la méthode

Soient a et b deux réels tels que a < b. Dans toute cette partie, on considere une fonction
f :Ja,b[— R de classe C? sur ]a, b[ telle que f’ ne s’annule pas sur |a, b|.

1. Montrer que la fonction f s’annule au plus une fois sur |a, b|.

2. Soit t €]a, b[. Montrer que la tangente a la courbe de f au point (¢, f(¢)) coupe I'axe des
ft)

f1(t)

Dans toute la suite, on suppose qu’il existe ¢ €]a, b (a fortiori unique) tel que f(c) = 0.

Pour tout r > 0, on pose J, = [c —r,c+7].

Soit (¢, )nen une suite définie par

abscisses au point d’abscisse t —

co €la, b|
f(cn)
fen)

Autrement dit, la méthode consiste a tracer la tangente a la courbe de f au point (cq, f(co)),
a trouver le réel ¢ en lequel la tangente coupe cet axe, puis a itérer ce procédé en étudiant
ensuite I'intersection de la tangente a la courbe de f au point (¢1, f(c1)) avec 'axe des abscisses
et ainsi de suite.

Nous allons montrer que la suite ainsi obtenue approche le point d’annulation de f.

VneN, i1 =c¢, —

3. (a) Justifier qu’il existe r > 0 tel que J, Cla,b].



(b) Soit r > 0 tel que J. Cla,b[. Justifier que s, = gzne%i(|f”(x)| et i, = grébrrl|f’(x)| sont
bien définis et que 7, > 0.

On note K, = i

21,

(c) Justifier qu’il existe r > 0 tel que 0 < rK, < 1.
On pourra commencer par montrer que si ro > 0 est tel que J., Cla,b|, alors pour
tout r €]0, 79, K, < K.

On fixe dorénavant un réel r > 0 tel que J, Cla,b[ et 0 < rK, < 1.

4. Soit n € N tel que ¢, € J,.

(a) A l'aide de I'inégalité de Taylor-Lagrange, montrer que

slc — cnl?

[f(€) = flen) = filen)(e = en)l S =

(b) En déduire que |c,y1 — | < K,|c, — ¢[?, puis que ¢,y 1 € J,.
5. Montrer que si ¢y € J,., alors pour tout n € N, ¢, € J, et en déduire que la suite (¢, )nen
est bien définie.
On fixe dorénavant un réel ¢y € J,., de telle sorte que pour tout n € N ¢, € J,.

Kileo — o))
M et en conclure que lim ¢, =c.

6. Montrer que pour tout n € N, |¢, — ¢| <
Kr n—4o0o



