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Problème 1 : Théorème de Darboux

Le but de ce problème est de montrer le théorème de Darboux : si f : I −→ R est dérivable,
alors la fonction f ′ vérifie le théorème des valeurs intermédiaires (même si elle n’est pas continue
sur I), à savoir : pour tout (a, b) ∈ I2 avec a ⩽ b pour tout y entre f ′(a) et f ′(b), il existe
c ∈ [a, b] tel que f ′(c) = y.
Soient (a, b) ∈ I2 avec a ⩽ b. Soit y entre f ′(a) et f ′(b).
On considère les fonctions

φ :]a, b] −→ R

x 7−→ f(x)− f(a)

x− a

et
ψ : [a, b[ −→ R

x 7−→ f(x)− f(b)

x− b

.

1. (a) Montrer que les fonctions φ et ψ peuvent être prolongées par continuité sur [a, b].
On note φ̃ et ψ̃ leurs prolongements respectifs.

(b) Montrer que φ̃([a, b]) et ψ̃([a, b]) sont des intervalles non disjoints, i.e.

φ̃([a, b]) ∩ ψ̃([a, b]) ̸= ∅.

(c) En déduire que φ̃([a, b])∪ ψ̃([a, b]) est un intervalle (on pourra montrer au préalable
que l’union de deux intervalles non disjoints est un intervalle).

2. Montrer que y ∈ φ̃([a, b]) ∪ ψ̃([a, b]).
3. On suppose dans cette question que y ∈ φ̃([a, b]).

(a) Montrer que si y = φ̃(a), alors y = f ′(a).

(b) Justifier que si y ∈ φ̃(]a, b]), alors il existe c ∈]a, b[ tel que y = f ′(c).

4. On suppose dans cette question que y ∈ ψ̃([a, b]).

(a) Montrer que si y = ψ̃(b), alors y = f ′(b).

(b) Justifier que si y ∈ ψ̃([a, b[), alors il existe c ∈]a, b[ tel que y = f ′(c).

5. Conclure.



Problème 2 : Méthode de Newton

L’objectif de ce problème est de montrer la convergence de la méthode de Newton, dont le but
est d’approcher l’unique point d’annulation d’une fonction dans un intervalle donné.
Autrement dit, si f est définie sur un intervalle I sur lequel la fonction f s’annule en un unique
point c, on cherche à construire une suite (cn)n∈N à valeurs dans I telle que lim

n→+∞
cn = c.

Partie I : Formules de Taylor

Soit n ∈ N. Soient a et b deux réels avec a ⩽ b. Soit x0 ∈ [a, b] un réel fixé.
Dans toute cette partie, on considère une fonction f : [a, b] −→ R de classe Cn+1 sur [a, b]. On
rappelle que pour tout k ∈ J0, n+ 1K, f (k) désigne la dérivée k-ème de f.

1. Montrer que pour tout x ∈ [a, b], f(x) = f(x0) +

∫ x

x0

f ′(t)dt.

2. En déduire que pour tout x ∈ [a, b],

f(x) =
n∑

k=0

f (k)(x0)

k!
(x−x0)k+

∫ x

x0

f (n+1)(t)

n!
(x−t)ndt (Formule de Taylor avec reste intégral)

Indication : on pourra procéder par récurrence sur l’entier naturel n.

3. Justifier qu’il existe un réel positif M tel que pour tout t ∈ [a, b], |f (n+1)(t)| ⩽M.

4. En déduire que

∀x ∈ [a, b],

∣∣∣∣∣f(x)−
n∑

k=0

f (k)(x0)

k!
(x− x0)

k

∣∣∣∣∣ ⩽ M |x− x0|n+1

(n+ 1)!
(Inégalité de Taylor-Lagrange)

Partie II : Principe de la méthode

Soient a et b deux réels tels que a < b. Dans toute cette partie, on considère une fonction
f :]a, b[−→ R de classe C2 sur ]a, b[ telle que f ′ ne s’annule pas sur ]a, b[.

1. Montrer que la fonction f s’annule au plus une fois sur ]a, b[.

2. Soit t ∈]a, b[. Montrer que la tangente à la courbe de f au point (t, f(t)) coupe l’axe des

abscisses au point d’abscisse t− f(t)

f ′(t)
.

Dans toute la suite, on suppose qu’il existe c ∈]a, b[ (a fortiori unique) tel que f(c) = 0.
Pour tout r > 0, on pose Jr = [c− r, c+ r].
Soit (cn)n∈N une suite définie par c0 ∈]a, b[

∀n ∈ N, cn+1 = cn −
f(cn)

f ′(cn)
.

Autrement dit, la méthode consiste à tracer la tangente à la courbe de f au point (c0, f(c0)),
à trouver le réel c1 en lequel la tangente coupe cet axe, puis à itérer ce procédé en étudiant
ensuite l’intersection de la tangente à la courbe de f au point (c1, f(c1)) avec l’axe des abscisses
et ainsi de suite.
Nous allons montrer que la suite ainsi obtenue approche le point d’annulation de f.

3. (a) Justifier qu’il existe r > 0 tel que Jr ⊂]a, b[.



(b) Soit r > 0 tel que Jr ⊂]a, b[. Justifier que sr = max
x∈Jr

|f ′′(x)| et ir = min
x∈Jr

|f ′(x)| sont
bien définis et que ir > 0.

On note Kr =
sr
2ir

.

(c) Justifier qu’il existe r > 0 tel que 0 ⩽ rKr < 1.

On pourra commencer par montrer que si r0 > 0 est tel que Jr0 ⊂]a, b[, alors pour
tout r ∈]0, r0], Kr ⩽ Kr0 .

On fixe dorénavant un réel r > 0 tel que Jr ⊂]a, b[ et 0 ⩽ rKr < 1.

4. Soit n ∈ N tel que cn ∈ Jr.

(a) A l’aide de l’inégalité de Taylor-Lagrange, montrer que

|f(c)− f(cn)− f ′(cn)(c− cn)| ⩽
sr|c− cn|2

2
.

(b) En déduire que |cn+1 − c| ⩽ Kr|cn − c|2, puis que cn+1 ∈ Jr.

5. Montrer que si c0 ∈ Jr, alors pour tout n ∈ N, cn ∈ Jr et en déduire que la suite (cn)n∈N
est bien définie.

On fixe dorénavant un réel c0 ∈ Jr, de telle sorte que pour tout n ∈ N, cn ∈ Jr.

6. Montrer que pour tout n ∈ N, |cn − c| ⩽ (Kr|c0 − c|)2n

Kr

et en conclure que lim
n→+∞

cn = c.


