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Exercice 1 : Un système différentiel

1. On a pour tout réel t{
x′1(t) = −3x1(t) + 8x2(t)
x′2(t) = −2x1(t) + 5x2(t)

⇔
(
x′1(t)
x′2(t)

)
=

(
−3 8
−2 5

)(
x1(t)
x2(t)

)
⇔ X ′(t) = AX(t)

avec A =

(
−3 8
−2 5

)
.

2. (a) Soit λ ∈ R. On a les équivalences suivantes :

A− λI2 n’est pas inversible ⇔ det(A− λI2) = 0 ⇔
∣∣∣∣ −3− λ 8

−2 5− λ

∣∣∣∣ = 0

d’où (−3− λ)(5− λ) + 16 = λ2 − 2λ+ 1 = (λ− 1)2 = 0 ⇔ λ = 1.

(b) Soit U =

(
a
b

)
. On a les équivalences :

AU = U ⇔
(
−3 8
−2 5

)(
a
b

)
=

(
a
b

)
⇔

{
−3a+ 8b = a
−2a+ 5b = b

⇔
{

−4a+ 8b = 0
−2a+ 4b = 0

d’où a = 2b. Finalement, les matrices U ∈ M2,1(R) telles que AU = U sont{
U =

(
2b
b

)
= b

(
2
1

)
, b ∈ R

}
.

3. On a det(P ) = −1. Puisque P−1 =
1

det(P )

(
0 −1
−1 2

)
, on en déduit que P−1 =

(
0 1
1 −2

)
.

4. On calcule :

P−1AP =

(
0 1
1 −2

)(
−3 8
−2 5

)(
2 1
1 0

)
=

(
−2 5
1 −2

)(
2 1
1 0

)
=

(
1 −2
0 1

)
d’où P−1AP = T.

5. (a) Soit t ∈ R.On a

(
y1(t)
y2(t)

)
= Y (t) = P−1X(t) =

(
0 1
1 −2

)(
x1(t)
x2(t)

)
=

(
x2(t)

x1(t)− 2x2(t)

)
d’où {

y1(t) = x2(t)
y2(t) = x1(t)− 2x2(t)

.

On a alors

P−1X ′(t) =

(
0 1
1 −2

)(
x′1(t)
x′2(t)

)
=

(
x′2(t)

x′1(t)− 2x′2(t)

)
=

(
y′1(t)
y′2(t)

)
= Y ′(t).



On a donc bien montré que pour tout t ∈ R, Y ′(t) = P−1X ′(t).

On a montré que P−1AP = T donc P−1A = TP−1. Ainsi, pour tout réel t,

Y ′(t) = P−1X ′(t) = P−1AX(t) = TP−1X(t) = TY (t).

On a donc bien montré que pour tout t ∈ R, Y ′(t) = TY (t).

(b) L’égalité matricielle montrée à la question précédente s’écrit sous la forme d’un

système : pour tout réel t, Y ′(t) =

(
1 −2
0 1

)(
y1(t)
y2(t)

)
donc{

y′1(t) = y1(t)− 2y2(t)
y′2(t) = y2(t)

.

Les solutions de la deuxième équation sont les fonctions{
y2 : t 7→ µet, µ ∈ R

}
.

(c) En injectant dans la première équation, on trouve pour tout t ∈ R,

(E) : y′1(t)− y1(t) = −2y2(t) = −2µet.

On résout d’abord l’équation homogène (H) : y′1(t) − y1(t) = 0 dont les solutions
sont les fonctions y1 : t 7→ λet, où λ est une constante réelle.

On résout ensuite (E) en utilisant la méthode de variation de la constante.

Soit y1 définie pour tout t ∈ R par y1(t) = λ(t)et où λ : R → R est une fonction
dérivable.

On a alors les équivalences suivantes :

y′1(t)− y1(t) = 2µet ⇔ (λ′(t) + λ(t))et − λ(t)et = −2µet

⇔ λ′(t) = −2µ

⇔ λ(t) = −2µt+ λ, λ ∈ R
⇔ y1(t) = λet − 2µtet.

Ainsi, les solutions de (E) sur R sont les fonctions{
y1 : t 7−→ λet − 2µtet, λ ∈ R

}
.

(d) Pour tout t ∈ R,

Y (t) =

(
λet − 2µtet

µet

)
.

Ainsi, pour tout t ∈ R,

X(t) = PY (t) =

(
2 1
1 0

)(
λet − 2µtet

µet

)
=

(
(2λ+ µ)et − 4µtet

λet − 2µtet

)
,

où (λ, µ) ∈ R2.

Il existe donc bien deux constantes (λ, µ) ∈ R2 telles que pour tout réel t,{
x1(t) = (2λ+ µ)et − 4µtet

x2(t) = λet − 2µtet
, (λ, µ) ∈ R2.



On a les équivalences suivantes :{
x1(0) = 1
x2(0) = 1

⇔
{

2λ+ µ = 1
λ = 1

⇔
{

µ = −1
λ = 1

L’unique couple de solutions (x1, x2) vérifiant x1(0) = x2(0) = 1 est donc{
x1(t) = et + 4tet

x2(t) = et + 2tet
, pour tout t ∈ R.

Exercice 2 : Une suite récurrente linéaire d’ordre 3

Partie I : Calcul des puissances d’une matrice

1. Soit λ ∈ R tel que l’équation AX = λX admette une solution non nulle. Cette équation
équivaut à (A− λI3)X = 0. Or, pour tout réel λ, cette équation admet la solution nulle
et celle-ci est unique si et seulement si A− λI3 est inversible.

On cherche donc à déterminer les réels λ pour lesquels A−λI3 n’est pas inversible, c’est
à dire les réels λ pour lesquels rg(A− λI3) < 3.

Soit λ ∈ R. Echelonnons la matrice A− λI3.

A−λI3 =

−λ 1 0
0 −λ 1
−2 1 2− λ

 L1↔L3−→

−2 1 2− λ
0 −λ 1
−λ 1 0

 L3←2L3−λL1−→

−2 1 2− λ
0 −λ 1
0 2− λ λ2 − 2λ


L2←L2−L3−→

−2 1 2− λ
0 −2 −λ2 + 2λ+ 1
0 2− λ λ2 − 2λ

 2L3+(2−λ)L2−→

−2 1 2− λ
0 −2 −λ2 + 2λ+ 1
0 0 λ3 − 2λ2 − λ+ 2

 .

Or, (λ3 − 2λ2 − λ+ 2) = (λ− 1)(λ+ 1)(λ− 2) donc on a les équivalences

rg(A− λI3) < 3 ⇔ λ3 − 2λ2 − λ+ 2 = 0 ⇔ λ ∈ {1,−1, 2}.

Les réels cherchés sont donc 1,−1, et 2.

2. (a) On a les équivalences suivantes :

AX = X ⇔

 0 1 0
0 0 1
−2 1 2

x
y
z

 =

x
y
z

 ⇔


y = x
z = y

−2x+ y + 2z = z
⇔ x = y = z

donc l’ensemble des solutions deAX = X est

X =

x
x
x

 = x

1
1
1

 , x ∈ R.


(b) On a les équivalences suivantes :

AX = −X ⇔

 0 1 0
0 0 1
−2 1 2

x
y
z

 =

−x
−y
−z

 ⇔


y = −x
z = −y

−2x+ y + 2z = −z
⇔

{
y = −x
z = x

donc l’ensemble des solutions deAX = X est

X =

 x
−x
x

 = x

 1
−1
1

 , x ∈ R.





(c) On a les équivalences suivantes :

AX = 2X ⇔

 0 1 0
0 0 1
−2 1 2

x
y
z

 =

2x
2y
2z

 ⇔


y = 2x
z = 2y

−2x+ y + 2z = 2z
⇔

{
y = 2x
z = 4x

donc l’ensemble des solutions deAX = X est

X =

 x
2x
4x

 = x

1
2
4

 , x ∈ R.


3. (a) Echelonnons P en utilisant la méthode du pivot de Gauss afin de déterminer l’inverse

de P si P est inversible. 1 1 1 1 0 0
1 −1 2 0 1 0
1 1 4 0 0 1

 L2←L2−L1
L3←L3−L1−→

 1 1 1 1 0 0
0 −2 1 −1 1 0
0 0 3 −1 0 1

 L1←2L1+L2−→

 2 0 3 1 1 0
0 −2 1 −1 1 0
0 0 3 −1 0 1



L1←L1−L3
L2←3L2−L3−→

 2 0 0 2 1 −1
0 −6 0 −2 3 −1
0 0 3 −1 0 1


L1← 1

2
L1

L2←− 1
6
L2

L3← 1
3
L3−→

 1 0 0 1 1
2

−1
2

0 1 0 1
3

−1
2

1
6

0 0 1 −1
3

0 1
3

 .

On voit dès la deuxième étape que P est de rang 3, donc P est inversible et

P−1 =


1

1

2
−1

2
1

3
−1

2

1

6

−1

3
0

1

3

 =
1

6

 6 3 −3
2 −3 1
−2 0 2

 .

(b) On a

P−1AP =
1

6

 6 3 −3
2 −3 1
−2 0 2

 0 1 0
0 0 1
−2 1 2

1 1 1
1 −1 2
1 1 4


=

1

6

 6 3 −3
−2 3 −1
−4 0 4

1 1 1
1 −1 2
1 1 4


=

1

6

6 0 0
0 −6 0
0 0 12



donc P−1AP =

1 0 0
0 −1 0
0 0 2

 = D.

(c) Puisque D est une matrice diagonale, on a pour tout n ∈ N, Dn =

1n 0 0
0 (−1)n 0
0 0 2n


d’où

∀n ∈ N, Dn =

1 0 0
0 (−1)n 0
0 0 2n

 .



(d) Montrons par récurrence que pour tout n ∈ N, P−1AnP = Dn.

• Pour n = 0, on a P−1A0P = P−1I3P = P−1P = I3 = D0, donc la propriété est
vraie au rang n = 0.

• Soit n ∈ N fixé tel que P−1AnP = Dn. D’après la question 2.(b), P−1AP = D
donc

Dn+1 = DnD = (P−1AnP )P−1AP = P−1An(PP−1)AP = P−1AnI3AP = P−1An+1P,

ce qui prouve la formule au rang n+ 1 et achève la récurrence.

On a donc bien montré que ∀n ∈ N, P−1AnP = Dn.

(e) D’après la question précédente, pour tout n ∈ N, on a P−1AnP = Dn d’où en
multipliant à gauche par P et à droite par P−1 :

PDnP−1 = PP−1AnPP−1 = An.

On a donc pour tout n ∈ N,

An =
1

6

1 1 1
1 −1 2
1 1 4

1 0 0
0 (−1)n 0
0 0 2n

 6 3 −3
2 −3 1
−2 0 2


=

1

6

1 (−1)n 2n

1 (−1)n+1 2n+1

1 (−1)n 2n+2

 6 3 −3
2 −3 1
−2 0 2


=

1

6

 6 + 2((−1)n − 2n) 3(1 + (−1)n+1) −3 + (−1)n + 2n+1

6 + 2((−1)n+1 − 2n+1) 3(1 + (−1)n) −3 + (−1)n+1 + 2n+2

6 + 2((−1)n − 2n+2) 3(1 + (−1)n+1) −3 + (−1)n + 2n+3



donc ∀n ∈ N, An =
1

6

 6 + 2((−1)n − 2n) 3(1 + (−1)n+1) −3 + (−1)n + 2n+1

6 + 2((−1)n+1 − 2n+1) 3(1 + (−1)n) −3 + (−1)n+1 + 2n+2

6 + 2((−1)n − 2n+2) 3(1 + (−1)n+1) −3 + (−1)n + 2n+3

 .

Partie II : Etude de la suite

1. Soit n ∈ N. On a

AXn =

 0 1 0
0 0 1
−2 1 2

 un

un+1

un+2

 =

 un+1

un+2

−2un + un+1 + 2un+2

 .

Or, pour tout n ∈ N, on a un+3 = 2un+2 + un+1 − 2un donc

pour toutn ∈ N, AXn =

un+1

un+2

un+3

 = Xn+1.

2. Montrons par récurrence que pour tout n ∈ N, Xn = AnX0.

• Pour n = 0, on a A0X0 = I3X0 = X0 donc la propriété est vraie au rang n = 0.

• Soit n ∈ N fixé. On suppose que Xn = AnX0. Alors d’après la question précédente,

Xn+1 = AXn = A(AnX0) = An+1X0,

ce qui prouve la formule au rang n+ 1.

On a donc bien montré par récurrence que pour toutn ∈ N, Xn = AnX0.



3. On a X0 =

u0

u1

u2

 =

−6
0
0

 .

D’après la question précédente et le résultat de la première partie, on en déduit que pour
tout n ∈ N un

un+1

un+2

 =
1

6

 6 + 2((−1)n − 2n) 3(1 + (−1)n+1) −3 + (−1)n + 2n+1

6 + 2((−1)n+1 − 2n+1) 3(1 + (−1)n) −3 + (−1)n+1 + 2n+2

6 + 2((−1)n − 2n+2) 3(1 + (−1)n+1) −3 + (−1)n + 2n+3

−6
0
0


d’où, en considérant la première ligne de la matrice obtenue,

pour toutn ∈ N, un = −6 + 2(2n + (−1)n+1).

4. On a pour tout n ∈ N, un ⩾ −6 + 2(2n − 1) = 2n+1 − 8.

Or, puisque 2 > 1, lim
n→+∞

2n = +∞ donc lim
n→+∞

2n+1 − 8 = +∞.

Par comparaison, on en déduit que lim
n→+∞

un = +∞.


