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Corrigé de la liste d’exercices n°15 Dérivabilité

Exercice 1.

1. On a
g f@H ) = flath) o flath?) = fla)  flath) = fla)
h—0 h h—0 h? h
Puisque f est dérivable en a, on sait que }lg% fla+h) = fla) = f'(a).
Posons H = h%. On a H — 0 lorsque h — 0 donc
h?) — H) —
i OIS0y S D) J0) g
donc )
}}L%J%a—i_h )]Z_f(a+h) — 0 x f/(CL) —f'(a) _ —f’(a).
2. On a
glﬁiir(ll f(fﬂ)g(&; : i(a>g(x) _ i%g(a)w_f( )g(xa): : Z( ) _ f’(a)g(a)—f(a)g'(a)

Exercice 2. .
Soit f : x — x?arctan | —
x

A priori, la fonction f est définie sur R* mais elle est prolongeable par continuité en 0. En effet,
puisque la fonction arctan est bornée sur R, on a hH(l) f(z) = 0 donc on peut prolonger f par
T—r

continuité en 0 en posant f(0) = 0.
Par ailleurs, par imparité de la fonction arctan, on a pour tout x € R*,

f(—2) = (—2)* arctan <—1> — _22arctan (1> — ()

T T

donc la fonction f est impaire. Il suffit donc de I'étudier sur R .
Etudions les variations de f sur R* en calculant ses dérivées successives.

La fonction f est dérivable sur RY comme produit et composée de fonctions dérivables sur R*.

et on a pour tout r € R7,

f'(x) = 2z arctan 1 +a? 1 ;:Qxarctan R = 2 arctan 1 + !
x 12) 1+ % x) 1422 r) 142z

Par ailleurs, f est dérivable en 0 puisque

— f(0 1

lim M = lim x arctan (—) =0,

x—0 x—0 z—0 x
donc f'(0) = 0.
On dérive a nouveau f’ : pour tout x > 0,

1 2 1 2x 1 2x 2x
" = 2 t —_ | —— — - 2 t - | -

JHx) = 2arctan (a:) r1+ 5 (14 22)? archan (:L‘) L+22 (14 2?)?

= 2arctan (

1

)

—1.

dx + 223



et

f7(0) = lim M = lim 2arctan (l) -

z—0+ z—0 z—0+ T 1422

x—0 x r—+400

Enfin, pour tout = > 0,

1
car lim arctan (—) = lim arctan(z) =

2 1 (4 +62%)(1 + 22)? — 4z(1 + 22) (4o + 223)

3

fO) = T (1+ 22)
B 2 (4 + 622)(1 + 22) — 4z (4x + 223)
© o l+a? (14 a2)
~ 2(142%) + 62" + 102% + 4 — 162% — 82*
- (1+a2)3
2442+ 22" — 22" — 627+ 4
T (1+ 22)3
B —22% +6
" U
=3
ke

Ainsi, pour tout z > v/3, f®(z) = 0 et pour tout x €]0,v/3], fG(x) < 0 donc la fonction f” est
strictement croissante sur [v/3, +00| et strictement décroissante sur [0, v/3].
La fonction f” admet donc un minimum sur R et celui-ci vaut

0.

f"(v/3) = 2arctan (%) - %

Puisque f”(0) = m > 0, comme f” est continue sur R et strictement décroissante sur [0, v/3],
d’aprés le théoreme des valeurs intermédiaires, il existe un unique réel a €]0, \/5[ tel que
f"(@) =0

De plus, xgrfoo f"(x) = 0 donc pour tout = € [v/3, +oc[, f"(z) < 0.

Ainsi, pour tout = € [0, «f, f’(z) > 0 et pour tout x €], +oo|, f’(x) < 0 donc la fonction f’
est strictement croissante sur [0, o] et strictement décroissante sur [a, +00].

5\/§<
8

7-‘-_
3

_ 1 1. 1 _
On sait que arctan(z) v donc arctan | — | ~ — d’ou 2xarctan | — | ~ 2, ie.
X ) +oo X X ) +oo

1
lim 2z arctan (—) = 2.

Tr——+00 €T

1
Ainsi, lim f'(z) = lim 2z arctan (—) + —1=2+40—1 = 1. Puisque f’ est strictement
T—+00 z—>+00 X 1+ a?

croissante sur [0, a] et strictement décroissante sur [«, +oo[ avec f/(0) = 0 et lirf f(z) =1,
T—r+00

alors pour tout x > 0, f’(z) > 0 donc la fonction f est strictement croissante sur R, et on a
1

f(0)=0et lim f(x)=+oo car z?arctan(z) ~ 22~ = z.
T—+400 +oo T
Par imparité de f, on en déduit que f est strictement croissante sur R et lim f(x) = —c0.

T—r—00

Exercice 3.



1. Soit f : z +— arctan(2x) 4 arctan(x). La fonction f est dérivable sur R comme composée
de fonctions dérivables sur R et on a pour tout = € R,

2 1 2 1

TIv e 12 1142 1t

f'(x)

Ainsi, pour tout z € R, f'(x) > 0 donc la fonction f est strictement croissante sur R.
Calculons les limites de f.

T
On a lim arctan(x) = —5 Par ailleurs, lim 2z = —oo donc par composition de
T—>—00 T—>—00
T
limites, lim arctan(2z) = ——. Ainsi, lim f(x)= —m.
T——00 2 T——00

~ . m . . ..
De méme, lim arctan(x) = —. Par ailleurs, lim 2z = +o00 donc par composition de
Tr—400 2 Tr—+00

m
limites, :EEI—POO arctan(2x) = 5 Ainsi, x1—1>rfoof<x) =T.

Puisque f est continue et strictement croissante sur R, la fonction f est bijective de R
sur f(R) =] — 7, 7[.

2. Puisque f est bijective de R sur | — 7, 7[, il existe un unique réel z tel que f(z) = §
donc I'équation (£) admet une unique solution sur R.
3. Soit x la solution de (£) sur R. On a alors
T tan(arctan(2z)) + tan(arctan(z)) 3z
an(arctan(2z)+arctan(z)) = tan 4 1 — tan(arctan(z)) tan(arctan(2zx)) 1 — 222

ce qui implique que 222 4+ 3z — 1 = 0. Les racines de ce trinome du second degré sont
-3 — V17 -3+ V17
x1:T<Oetx2:T>0.
Or, la fonction f est strictement croissante sur R et f(0) = 0 donc 'unique antécédent
de 7 par la fonction f est nécessairement strictement positif.
V17 -3
YR

On en déduit que 'unique solution de (E) sur R est z =

Exercice 4.
1. Les fonctions cos et sin sont dérivables sur R et on a cos’ = — sin, cos® = — cos, cos® =
sin, cos® = cos.
On en déduit par une récurrence immédiate que pour tout n € N, cos est de classe

C" sur R (donc cos est de classe C*) et pour tout n € N,cos™ = cos, cos" 1) =
— sin, cos™®t2) = — cos et cos™t3) = gin .

2. Montrons par récurrence que pour tout n € N, f est de classe C" sur R\ {2} et que pour

|
tout x € R\ {2}, f"(z) = @jlw

e Initialisation : pour n = 0, on a bien f de classe C°, i.e. continue sur R\ {2}, et pour

tou z € R\ {2}, fO(2) = f(z) = ﬁ’

e Hérédité : Soit n € N fixé. On suppose que f est de classe C" sur R\ {2} et que pour

donc la propriété est vraie au rang n = 0.

|
tout z € R\ {2}, f™(x) = @rlﬁ Montrons que f est de classe C"*! sur R\ {2} et
—x n
1)!
que pour tout x € R\ {2}, f*+)(z) = %

Posons u(z) = 2 — 2. On a pour tout # € R\ {2}, f(x) = . Puisque u est

n:
untl (33)

dérivable et ne s’annule pas sur R \ {2}, on en déduit que f™ est dérivable sur R \ {2}



et que pour tout z € R\ {2},

FOD () = — (n + 1)nl/(z) _ (n+1)!

u™t?(x) (2 — x)nt2’

Puisque f(™*Y) est continue sur R\ {2}, on en déduit que f est de classe C"** sur R\ {2},
ce qui prouve la propriété au rang n + 1 et acheve la récurrence.

Ainsi, f est de classe C* sur R\ {2} et pour tout n € N, pour tout = € R\ {2},

n!

N P —
FO@) =

Exercice 5. La fonction f est dérivable sur R* comme composée de fonctions dérivables sur

R* et on a pour tout x € R* :

2 2 2
202%™ — e + 1 2 ¥ =1

f/(l') = 2 =2¢" —

Montrons que f est dérivable en 0. On a

z2
i L) = SO) e — 1
z—0 x—0 r—0 2

. oy . , . 2 <

Or, hn% 22 =0ete® —1 v donc par composition, on en déduit que e — 1 > 22, dolt
Tr—r
2

-1
lim & 5— = 1. Ainsi, f est dérivable en 0 et f'(0) = 1.
x—0 x

On a donc montré que f est dérivable sur R. Pour montrer que f est de classe C! sur R, il reste
a établir que [’ est continue sur R.

La fonction f’ est continue sur R* comme composée de fonctions continues sur R*. Il reste a

vérifier la continuité de f’ en 0.

2

— 1 et on a lim2e® =2 donc
X x—0

On a déja montré que lim
z—0

lim f'(z) = lim 2% —
ly () = lmy 2
ce qui prouve que f’ est continue en 0, et finalement f’ est bien continue sur R.
On en conclut que f est de classe C! sur R.

Exercice 6.

1. La fonction f est de classe C* sur R comme quotient de fonctions de classe C* sur
R?%, le dénominateur ne s’annulant pas sur R

2. elInitialisation :

1 1
Pour n = 0, on a pour tout x € R¥, fO@2) = f(z) = n(z) _ ot ziln(x) avec ug = 0
T x

et vg = 1, donc la propriété est vraie au rang n = 0.

eHérédité :

Soit n € N fixé. On suppose qu’il existe deux réels u,, et v, tels que pour tout réel x

strictement positif, on ait f(™(z) = %ﬂn(w)

Montrons la propriété au rang n+ 1, c’est a dire montrons qu’il existe deux réels u,,; et

Unt1 + Vpy1 In(2)
xn+2

vn11 tels que pour tout réel x strictement positif, on ait f (”“)(x) =



En dérivant £, on a pour tout = > 0,

) () Yo g™ — (n+ 1)a"(uy + v, In(2)) Uy — (n A+ Du, — (n+ 1)y, ln(x).

(xn-i-l)Q o rnt2
Up+1 + Vg1 In(z
Posons tp41 = vn—(n+1)u, et v,41 = —(n+1)v, et on abien fO+)(z) = —F T:; (z)
x

ce qui prouve la propriété au rang n + 1 et acheve la récurrence.
Soit n € N. Utilisons la formule de Leibniz pour calculer f(™.

1
Posons pour tout z € R%,g(z) = —. La fonction g est de classe C> et on a pour

x

. (—1)kk! ) )
tout & € N, pour tout x € R%, g®(z) = e (ceci se montre par une récurrence
x

immédiate).

1
Par ailleurs, remarquons que pour tout « € R%,In’(z) = = donc pour tout k& € N*, pour

—1)F Yk —1)!
tout x € R, In®(z) = g*=V(z) = = wlg ! ‘

D’apres la formule de Leibniz, puisque pour tout € R%, f(x) = In(z) x g(x), f est de
classe C" sur R et on a pour tout z € R7,

n

1w = 3 ()

k=0

k=1
C (CD)maln(e) | O ( DRk — 1) (=1)"F(n — k)!
- anrl + ; kl n _ rk pn—k+1
(=)™l n(x) N (—1)" " In! Zk:1%

- :L.nJrl xn+1

"1
d tout n € N, u,, = (—=1)""'n! — et v, =(—1)"n!
onc pour tout n U (—1) nzkev (=1)"n

Exercice 7.

1.

Exercice 8. Puisque f'(a) = lim

x €la,a+al,

(2t +1)®

t— définie et dérivable sur R.

1
U g In(|u|) définie sur R*.
x — 82 définie et dérivable sur R.

t—

cos(d) définie et dérivable sur | J,.,] — 5 + k7, § + kn|.

1
T i(ln(x))2 définie et dérivable sur R .

x +— 2eV?® définie sur R, et dérivable sur R?.

. u+ In(In(u)) définie et dérivable sur |1, 4+o0|.

f(z) = f(a)

Tr—a Tr — Qa

> (, on sait qu’il existe a > 0 tel que pour tout

f(z) — f(a)

> 0, ce qui implique que pour tout = €|a,a+ «a], f(z) — f(a) > 0 (car
r—a

xr—a>0).

)



En particulier, f(a+ «) > f(a) = 0.

— f(b
De méme, puisque f'(b) = lim M > 0, on sait qu’il existe § > 0 tel que pour tout
Tr—a T —
— f(b
x € [b— B0, % > 0, ce qui implique que pour tout x € [b — 5,b[, f(x) — f(b) <O

(car z — b < 0).

En particulier, f(b— ) < f(b) = 0.

Puisque f est continue (car dérivable) sur [a,b], que f(a + «) > 0 et f(b— ) < 0, on déduit
du théoréme des valeurs intermédiaires qu'il existe ¢y entre a + « et b — 3, donc ¢y €la, b| tel
que f(cs) = 0.

Puisque f est continue sur [a, ¢5], dérivable sur |a, o[, telle que f(a) = f(cg) = 0, on déduit du
théoreme de Rolle qu’il existe ¢; €|a, co] tel que f/'(c1) = 0.

De méme, puisque f est continue sur [cq, b], dérivable sur |cg, b, telle que f(b) = f(cy) =0, on
déduit du théoreme de Rolle qu’il existe c3 €|eg, b] tel que f'(¢cy) = 0.

On a donc bien a < ¢; < ¢2 < ¢3 < b tel que f(ca) = f'(c1) = f'(c3) = 0.

Exercice 9.
1. Posons pour tout z € [a,b], h(z) = g(x)(f(b) — f(a)) — f(z)(9(b) — g(a)).
La fonction h est continue sur [a, b] et dérivable sur |a, b| car f et g le sont.
De plus, on a h(a) = g(a)f(b) — f(a)g(b) = h(b) donc d’apres le théoreme de Rolle, il
existe ¢ €]a, b tel que h'(c) = 0.
Or, W'(c) = ¢'(e)(f(b) — f(a)) — f'(c)(g(b) — g(a)) donc
g()(f(b) = f(a)) = f'(c)(g(b) — g(a)).
2. (a) Montrons que pour tout z €|a, b], g(z) # 0.
S’il existait x €la,b] tel que g(z) = 0, d’apres le théoreme de Rolle, il existerait
¢ €la, x[ tel que ¢'(c) =0, ce qui est absurde.
Donc pour tout z €]a, b], g(z) # 0.
(b) Soit z €]a,b]. D’apres la question précédende, il existe ¢, €|a, x| tel que

9'(ca)(f(x) = f(a)) = ['(ca)(9(x) — g(a)),

d’ott f@) _ [(e) puisque f(a) = g(a) = 0.

g(x)  g'(c)
Or, puisque pour tout z €]a,b],a < ¢, < z, on a d’apres le théoreme des gendarmes,

!/
x
lim ¢, = a. Par ailleurs, on sait que lim (@) = [, donc par composition de limites,
r—a r—a g/(x)
/
on obtient lim f/(cx) =1, d’ou lim M =1.
z—a ¢'(cg) z—a g(x)

Exercice 10. Posons g : x +— e*(f'(x) — f(x)). Puisque f est deux fois dérivable sur [a, b], on
en déduit que g est dérivable sur [a,b] donc continue sur [a, b] et dérivable sur |a, b].

Par ailleurs, g(a) = e2(f'(a) — f(a)) = 0 et g(b) = e*(f'(b) — f(b)) = 0.

D’apres le théoreme de Rolle, on en déduit qu’il existe ¢ €]a, b| tel que ¢'(c) = 0.

Or, ¢'(c) = e“(f'(c)— f(c)+ f"(c) — f'(c)) = e°(f"(c) — f(c)) = 0. Puisque e® # 0, ceci implique
que f(c) = f(c) = 0, dou f(c) = f"(c).

Exercice 11. Posons pour tout = € [a,b], g(z) = f(:E), ce qui est légitime car [a,b] C R%. La
T

fonction g est continue sur [a, b] et dérivable sur |a, b[ car f et x — x le sont.
Par ailleurs, g(a) = ¢g(b) = 0 car f(a) = f(b) = 0 donc d’apres le théoréme de Rolle, il existe
¢ €la, b| tel que ¢'(c) = 0.

f(¢)

Ol“, g’(c) _ Cfl(c> B f(C) T

2 = 0 donc c¢f’'(c) — f(c) =0, i.e. f'(c) = , car ¢ # 0.



Exercice 12. Soient [ et I’ deux réels tels que lirf flz)=1let hgl f(x)=1.

Supposons par 'absurde que [ £ 0. Dans un premier temps, on suppose ' > 0.
Puisque lim f'(x) =1"> 0, il existe A > 0 tel que pour tout z > A, f'(z) > g
T—r+00

Soit x > A. Puisque f est continue sur [A, x| et dérivable sur |A, z[, d’apres le théoreme des
!/

l
accroissements finis, il existe ¢ €] A, z[ tel que f(z) — f(A) = f'(¢)(x — A) > §(x —A).

[ [
Ainsi, pour tout z > A, f(x) > f(A)+ §($_ A). Puisque I’ > 0, lir+n flA)+ 5(9&—/1) = 400,
T—r+00

donc par comparaison, on en déduit que liIJP f(x) = 400, ce qui contredit notre hypothese
Tr—r+00

de départ.
De méme, si I’ < 0, alors lirf —f'(x) = —=1' > 0 donc d’apres ce qui précede, on en déduit que
T—r+00
lir}rq —f(z) = 400, d’ou liril f(z) = —o0, ce qui est de nouveau absurde.
T—400 T—+00

I1 est donc absurde de supposer " # 0.
On a donc nécessairement I’ = 0, i.e. lim f'(z) =0.

T—+00
Autre méthode (due a Rose) :

Pour tout € R, d’apres le théoréme des accroissements finis appliqué sur [z, z + 1], il existe
1) —
¢y €lx,x + 1] tel que f'(c;) = f(:l?w-:— i — i(x) = f(z+1) = f(2).
On a d’une part, lirJqu fle+1)— f(x)=1—-1=0.
T—>+00

D’autre part, lim ¢, = 400 (car ¢, > x), donc par composition de limites, lim f'(c,) =1".
T—r+00 T—>+00

Par unicité de la limite, " = 0.

Exercice 13. Posons pour tout = € [a,b],g(z) = f(c)(x — a)(z — b) — (¢ — a)(c — b) f(x).
Puisque f € C*([a,b],R), on a également g € C*([a,b], R).

On a g(a) = g(c) = g(b) = 0. En appliquant le théoreme de Rolle sur [a, c] et sur [¢,b], on en
déduit qu'il existe a €]a, | et B €]c,b] tels que ¢'(a) = ¢'(5) = 0.

Puisque ¢’ est continue sur [«, 3] et dérivable sur |a, B[, on peut de nouveau appliquer le
théoreme de Rolle sur [a, ] et on en déduit qu’il existe v €]a, B[Cla, b[ tel que ¢”(v) = 0.

Or, pour tout x € [a, b],

g'(x) = f(c)(2x — (a+b)) = (c—a)(c=b)f'(x) et g¢"(x)=2f(c)— (c—a)(c—0b)f"(z)
donc

§'() =0 (o) =

e=tfe=t

Exercice 14.

2
1. (a) La fonction f est dérivable sur R et on a pour tout z € R, f'(z) = — T On a donc

le tableau de variation suivant :

x —00 0 —+00

/() +

f /

—00 +00

La fonction f est continue et décroissante sur [0, 1] donc

3 4

F0.1) = 10,10 = [3.5] <01



(b)

On a
—5—V41  —5+44/41

1
f(:L')::B@5(4—x2):x(:>:v2+5x—4:0<:>x:

5 oux = 5
2 2
On a pour tout z € [0,1], |f'(z)| = ‘—gz = —|z| < :
,_VAl-5
_T.

Montrons par récurrence que pour tout n € N, u,, € [0, 1]. eInitialisation :

ug € [0, 1].

eHérédité : Soit n € N. On suppose que u,, € [0, 1].

On a u,1 = f(u,) € f([0,1]) C [0,1] donc u,.;1 € [0,1] ce qui prouve la propriété
au rang n + 1 et acheve la récurrence.

Ainsi, pour tout n € N, u,, € [0, 1].

Soit n € N. On a |up1 — U] = | f(un) — f(D)].

Puisque u,, € [0,1] et [ € [0, 1], d’apres le théoreme des accroissements finis, il existe
c €]0,1[ tel que f(u,) — f(1) = f'(c)(upn — 1) 1. |ups1 — U = |f(e)||un — 1.

Or, puisque ¢ €]0,1[, on a |f'(¢)| < %, d’ou |up1 — 1] < §|un — 1|, et ce pour tout
n € N.

2 n
Montrons par récurrence que pour tout n € N, |u, — | < (5) :
2\ 0

Initialisation : Pour n = 0, puisque uy € [0, 1] et que ! € [0, 1], |up—1] < 1 = (5) .

’ 2, . , . 2
Hérédité : Soit n € N tel que |u, — ] < (3)

o o 2 2 (2 2\""! .
D’apres la question précédente, |u, 1 — | < 5| -1 < <z 5 =1z , ce qui

prouve la propriété au rang n + 1 et acheve la récurrence.
. 2\"
< 1, alors lim =] = 0.

n—-+o0o

2 n
Pour tout n € N,0 < |u, — ] < (g) . Puisque

D’apres le théoreme des gendarmes, lim |u, — | =0 donc lim wu, =I.
n—-+00 n—-+00

D’apres la question d, il suffit que

2\" 2 2
(g) < 10710 o enin(3) <107 < nln (g) < —10In(10) & n > —

2
In{-)<0.

101In(10)
In (3)
Sinon, on peut aussi utiliser le script suivant en Python :
n=0
while (2/5)**n>10%%*(-10):
n+=1
print(n)

101n(10)
In (3)

Puisque — ~ 25,12, le ng cherché est ng = 26.



Exercice 15.
1. (a) Puisque f : [a,b] — [a,b] est continue, on sait que f admet un point fixe [ sur [a, b].
Montrons que (x,)nen converge vers [.
Puisque f est k-lipschitzienne, on a |u; — | = | f(uo) — f(1)| < k|up—1|, puis |us — 1| =
[f(wr) = f(O)] < klug — 1] < K?|ug — 1.
Par récurrence immédiate, on montre que pour tout n € N, |u,, — | < k™|ug — .

Puisque 0 < k < 1, on a lim k"™ = 0, donc par comparaison, on en déduit que
n—-+00

lim |u, —1]=0,ie lim wu,=1I.
n—+oo n—+o0

(b) Si f admettait un autre point fixe I, la méme preuve que celle en question précédente
montrerait que nl_l}Iiloo u, = I’ d’ott [ = I’ par unicité de la limite, ce qui prouve I'unicité
du point fixe de f.

2. D’apres la question 1, fP admet un unique point fixe dans [a,b]. Notons-le [. Ainsi

P =1.

Montrons que [ est un point fixe de f.

On a fP(f(1)) = fPH (1) = f(f*(1)) = f(I) donc f(I) est un point fixe de fP. Or, le seul

point fixe de f? est [, donc f(I) = [, ce qui prouve que [ est un point fixe de f.

Par ailleurs, si f admettait un autre point fixe I’, on aurait fP(I') =’ donc par unicité

du point fixe de f, on aurait [ =1’, ce qui prouve I'unicité du point fixe de f.

Exercice 16. Supposons par l'absurde que f n’est pas constante. Il existe alors (a,b) € R?
avec a < b tel que f(a) # f(b).

e Supposons que f(a) < f(b). D’apres l'inégalité des trois pentes, on a pour tout x > b,
£~ f(a) _ f@)— 1)
b—a h x—b

doi @) > (e - LU= 4 )
Puisque f(b%i:(a) > 0, on a l_1£1 (x — b)w + f(b) = +oo0 donc 1_131 f(x) =400

par comparaison, ce qui est absurde puisque f est majorée.
e Supposons que f(a) > f(b). D’apreés I'inégalité des trois pentes, on a pour tout z < a,

fla) = f(z) _ f(b) = f(a)

a—zx h b—a

>0,ona lim (a—x)
Tr—r—00

d'ou f(x) > (a — z)

— (b _
Jla) = (o) fla) = Fb) + f(a) = +oo donc lim f(x) = 400
b—a b—a T——00

par comparaison, ce qui est absurde puisque f est majorée.

On en conclut que f est nécessairement constante sur R.

f(b)

Puisque

Exercice 17.
f(z) = f(0)

xr —

est croissante sur R.

— f(0
D’apres le théoreme de la limite monotone, on en déduit que lim M

T—+400 €T
existe dans R U {+o00}.

f(0)

Puisque lim ——= =0, on en déduit par somme de limites que

x—+o00 I
im L@ gy @O, SO
=400 I T—400 T r—t+oo I

1. Puisque f est convexe sur R, 'application =z

=1



2. Soit g : x — f(x)—lz. La fonction g est convexe sur R, comme somme de deux fonctions

convexes.
Par hypothese, lim @ = lim m —1=0.

r—+oo I r—+oo I
Montrons que g est décroissante sur R,. Soient (a,b) € (Ry)* avec a < b.
g(x) — g(a)

Tr—a

2

Puisque g est convexe sur R, alors la fonction h : x — est croissante.

T
Or, puisque lim M =0, on en déduit que lim h(x) = 0. Puisqu’elle est croissante,
r—+oco I Tr—400

on a alors pour tout x € R, \ {a}, h(a:) <0.
En particulier, h(b) = M
—a

qui prouve que g est décroissante sur R, .

< 0. Puisque a < b, on en déduit que g(b) < g(a), ce

D’apres le théoréme de la limite monotone, on en déduit que lim g¢(z) = lim f(x)—lx
T—r+00 T—>+00

existe dans R U {—o0}.



