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Exercice 1.

1. On a

lim
h→0

f(a+ h2)− f(a+ h)

h
= lim

h→0
h
f(a+ h2)− f(a)

h2
− f(a+ h)− f(a)

h
.

Puisque f est dérivable en a, on sait que lim
h→0

f(a+ h)− f(a)

h
= f ′(a).

Posons H = h2. On a H → 0 lorsque h → 0 donc

lim
h→0

f(a+ h2)− f(a)

h2
= lim

H→0

f(a+H)− f(a)

H
= f ′(a)

donc

lim
h→0

f(a+ h2)− f(a+ h)

h
= 0× f ′(a)− f ′(a) = −f ′(a).

2. On a

lim
x→a

f(x)g(a)− f(a)g(x)

x− a
= lim

x→a
g(a)

f(x)− f(a)

x− a
−f(a)

g(x)− g(a)

x− a
= f ′(a)g(a)−f(a)g′(a).

Exercice 2.

Soit f : x 7−→ x2 arctan

(
1

x

)
.

A priori, la fonction f est définie sur R∗ mais elle est prolongeable par continuité en 0. En effet,
puisque la fonction arctan est bornée sur R, on a lim

x→0
f(x) = 0 donc on peut prolonger f par

continuité en 0 en posant f(0) = 0.
Par ailleurs, par imparité de la fonction arctan, on a pour tout x ∈ R∗,

f(−x) = (−x)2 arctan

(
−1

x

)
= −x2 arctan

(
1

x

)
= −f(x)

donc la fonction f est impaire. Il suffit donc de l’étudier sur R∗
+.

Etudions les variations de f sur R∗
+ en calculant ses dérivées successives.

La fonction f est dérivable sur R∗
+ comme produit et composée de fonctions dérivables sur R∗

+

et on a pour tout x ∈ R∗
+,

f ′(x) = 2x arctan

(
1

x

)
+x2

(
− 1

x2

)
1

1 + 1
x2

= 2x arctan

(
1

x

)
− x2

1 + x2
= 2x arctan

(
1

x

)
+

1

1 + x2
−1.

Par ailleurs, f est dérivable en 0 puisque

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0
x arctan

(
1

x

)
= 0,

donc f ′(0) = 0.
On dérive à nouveau f ′ : pour tout x > 0,

f ′′(x) = 2 arctan

(
1

x

)
−2

x

1

1 + 1
x2

− 2x

(1 + x2)2
= 2arctan

(
1

x

)
− 2x

1 + x2
− 2x

(1 + x2)2
= 2arctan

(
1

x

)
− 4x+ 2x3

(1 + x2)2



et

f ′′(0) = lim
x→0+

f ′(x)− f ′(0)

x− 0
= lim

x→0+
2 arctan

(
1

x

)
− x

1 + x2
= π

car lim
x→0

arctan

(
1

x

)
= lim

x→+∞
arctan(x) =

π

2
.

Enfin, pour tout x > 0,

f (3)(x) = − 2

x2

1

1 + 1
x2

− (4 + 6x2)(1 + x2)2 − 4x(1 + x2)(4x+ 2x3)

(1 + x2)4

= − 2

1 + x2
− (4 + 6x2)(1 + x2)− 4x(4x+ 2x3)

(1 + x2)3

= −2(1 + x2)2 + 6x4 + 10x2 + 4− 16x2 − 8x4

(1 + x2)3

= −2 + 4x2 + 2x4 − 2x4 − 6x2 + 4

(1 + x2)3

= −−2x2 + 6

(1 + x2)3

= 2
x2 − 3

(1 + x2)3
.

Ainsi, pour tout x ⩾
√
3, f (3)(x) ⩾ 0 et pour tout x ∈]0,

√
3], f (3(x) ⩽ 0 donc la fonction f ′′ est

strictement croissante sur [
√
3,+∞[ et strictement décroissante sur [0,

√
3].

La fonction f ′′ admet donc un minimum sur R∗
+ et celui-ci vaut

f ′′(
√
3) = 2 arctan

(
1√
3

)
− 4

√
3 + 2

√
3
3

16
=

π

3
− 5

√
3

8
< 0.

Puisque f ′′(0) = π > 0, comme f ′′ est continue sur R et strictement décroissante sur [0,
√
3],

d’après le théorème des valeurs intermédiaires, il existe un unique réel α ∈]0,
√
3[ tel que

f ′′(α) = 0.
De plus, lim

x→+∞
f ′′(x) = 0 donc pour tout x ∈ [

√
3,+∞[, f ′′(x) < 0.

Ainsi, pour tout x ∈ [0, α[, f ′′(x) > 0 et pour tout x ∈]α,+∞[, f ′′(x) < 0 donc la fonction f ′

est strictement croissante sur [0, α] et strictement décroissante sur [α,+∞[.

On sait que arctan(x) ∼
0
x donc arctan

(
1

x

)
∼
+∞

1

x
d’où 2x arctan

(
1

x

)
∼
+∞

2, i.e.

lim
x→+∞

2x arctan

(
1

x

)
= 2.

Ainsi, lim
x→+∞

f ′(x) = lim
x→+∞

2x arctan

(
1

x

)
+

1

1 + x2
−1 = 2+0−1 = 1. Puisque f ′ est strictement

croissante sur [0, α] et strictement décroissante sur [α,+∞[ avec f ′(0) = 0 et lim
x→+∞

f ′(x) = 1,

alors pour tout x > 0, f ′(x) > 0 donc la fonction f est strictement croissante sur R+ et on a

f(0) = 0 et lim
x→+∞

f(x) = +∞ car x2 arctan(x) ∼
+∞

x2 1

x
= x.

Par imparité de f, on en déduit que f est strictement croissante sur R et lim
x→−∞

f(x) = −∞.

Exercice 3.



1. Soit f : x 7→ arctan(2x)+ arctan(x). La fonction f est dérivable sur R comme composée
de fonctions dérivables sur R et on a pour tout x ∈ R,

f ′(x) =
2

1 + (2x)2
+

1

1 + x2
=

2

1 + 4x2
+

1

1 + x2
.

Ainsi, pour tout x ∈ R, f ′(x) > 0 donc la fonction f est strictement croissante sur R.
Calculons les limites de f.

On a lim
x→−∞

arctan(x) = −π

2
. Par ailleurs, lim

x→−∞
2x = −∞ donc par composition de

limites, lim
x→−∞

arctan(2x) = −π

2
. Ainsi, lim

x→−∞
f(x) = −π.

De même, lim
x→+∞

arctan(x) =
π

2
. Par ailleurs, lim

x→+∞
2x = +∞ donc par composition de

limites, lim
x→+∞

arctan(2x) =
π

2
. Ainsi, lim

x→+∞
f(x) = π.

Puisque f est continue et strictement croissante sur R, la fonction f est bijective de R
sur f(R) =]− π, π[.

2. Puisque f est bijective de R sur ] − π, π[, il existe un unique réel x tel que f(x) = π
4

donc l’équation (E) admet une unique solution sur R.
3. Soit x la solution de (E) sur R. On a alors

tan(arctan(2x)+arctan(x)) = tan
(π
4

)
⇒ tan(arctan(2x)) + tan(arctan(x))

1− tan(arctan(x)) tan(arctan(2x))
= 1 ⇒ 3x

1− 2x2
= 1,

ce qui implique que 2x2 + 3x − 1 = 0. Les racines de ce trinôme du second degré sont

x1 =
−3−

√
17

4
< 0 et x2 =

−3 +
√
17

4
> 0.

Or, la fonction f est strictement croissante sur R et f(0) = 0 donc l’unique antécédent
de π

4
par la fonction f est nécessairement strictement positif.

On en déduit que l’unique solution de (E) sur R est x =

√
17− 3

4
.

Exercice 4.

1. Les fonctions cos et sin sont dérivables sur R et on a cos′ = − sin, cos(2) = − cos, cos(3) =
sin, cos(4) = cos .

On en déduit par une récurrence immédiate que pour tout n ∈ N, cos est de classe
Cn sur R (donc cos est de classe C∞) et pour tout n ∈ N, cos(4n) = cos, cos(4n+1) =
− sin, cos(4n+2) = − cos et cos(4n+3) = sin .

2. Montrons par récurrence que pour tout n ∈ N, f est de classe Cn sur R \{2} et que pour

tout x ∈ R \ {2}, f (n)(x) =
n!

(2− x)n+1
.

• Initialisation : pour n = 0, on a bien f de classe C0, i.e. continue sur R\{2}, et pour
tou x ∈ R \ {2}, f (0)(x) = f(x) =

0!

(2− x)0+1
, donc la propriété est vraie au rang n = 0.

• Hérédité : Soit n ∈ N fixé. On suppose que f est de classe Cn sur R \ {2} et que pour

tout x ∈ R \ {2}, f (n)(x) =
n!

(2− x)n+1
. Montrons que f est de classe Cn+1 sur R \ {2} et

que pour tout x ∈ R \ {2}, f (n+1)(x) =
(n+ 1)!

(2− x)n+2
.

Posons u(x) = 2 − x. On a pour tout x ∈ R \ {2}, f (n)(x) =
n!

un+1(x)
. Puisque u est

dérivable et ne s’annule pas sur R \ {2}, on en déduit que f (n) est dérivable sur R \ {2}



et que pour tout x ∈ R \ {2},

f (n+1)(x) = −(n+ 1)n!u′(x)

un+2(x)
=

(n+ 1)!

(2− x)n+2
.

Puisque f (n+1) est continue sur R\{2}, on en déduit que f est de classe Cn+1 sur R\{2},
ce qui prouve la propriété au rang n+ 1 et achève la récurrence.

Ainsi, f est de classe C∞ sur R \ {2} et pour tout n ∈ N, pour tout x ∈ R \ {2},

f (n)(x) =
n!

(2− x)n+1
.

Exercice 5. La fonction f est dérivable sur R∗ comme composée de fonctions dérivables sur
R∗ et on a pour tout x ∈ R∗ :

f ′(x) =
2x2ex

2 − ex
2
+ 1

x2
= 2ex

2 − ex
2 − 1

x2
.

Montrons que f est dérivable en 0. On a

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

ex
2 − 1

x2
.

Or, lim
x→0

x2 = 0 et ex − 1 ∼
0

x donc par composition, on en déduit que ex
2 − 1 ∼

0
x2, d’où

lim
x→0

ex
2 − 1

x2
= 1. Ainsi, f est dérivable en 0 et f ′(0) = 1.

On a donc montré que f est dérivable sur R. Pour montrer que f est de classe C1 sur R, il reste
à établir que f ′ est continue sur R.
La fonction f ′ est continue sur R∗ comme composée de fonctions continues sur R∗. Il reste à
vérifier la continuité de f ′ en 0.

On a déjà montré que lim
x→0

ex
2 − 1

x2
= 1 et on a lim

x→0
2ex

2

= 2 donc

lim
x→0

f ′(x) = lim
x→0

2ex
2 − ex

2 − 1

x2
= 2− 1 = 1 = f ′(0),

ce qui prouve que f ′ est continue en 0, et finalement f ′ est bien continue sur R.
On en conclut que f est de classe C1 sur R.

Exercice 6.

1. La fonction f est de classe C∞ sur R∗
+ comme quotient de fonctions de classe C∞ sur

R∗
+, le dénominateur ne s’annulant pas sur R∗

+.

2. •Initialisation :

Pour n = 0, on a pour tout x ∈ R∗
+, f

(0)(x) = f(x) =
ln(x)

x
=

u0 + v0 ln(x)

x0+1
avec u0 = 0

et v0 = 1, donc la propriété est vraie au rang n = 0.

•Hérédité :

Soit n ∈ N fixé. On suppose qu’il existe deux réels un et vn tels que pour tout réel x

strictement positif, on ait f (n)(x) =
un + vn ln(x)

xn+1
.

Montrons la propriété au rang n+1, c’est à dire montrons qu’il existe deux réels un+1 et

vn+1 tels que pour tout réel x strictement positif, on ait f (n+1)(x) =
un+1 + vn+1 ln(x)

xn+2
.



En dérivant f (n), on a pour tout x > 0,

f (n+1)(x) =
vn
x
× xn+1 − (n+ 1)xn(un + vn ln(x))

(xn+1)2
=

vn − (n+ 1)un − (n+ 1)vn ln(x)

xn+2
.

Posons un+1 = vn−(n+1)un et vn+1 = −(n+1)vn et on a bien f (n+1)(x) =
un+1 + vn+1 ln(x)

xn+2
,

ce qui prouve la propriété au rang n+ 1 et achève la récurrence.

3. Soit n ∈ N. Utilisons la formule de Leibniz pour calculer f (n).

Posons pour tout x ∈ R∗
+, g(x) =

1

x
. La fonction g est de classe C∞ et on a pour

tout k ∈ N, pour tout x ∈ R∗
+, g

(k)(x) =
(−1)kk!

xk+1
(ceci se montre par une récurrence

immédiate).

Par ailleurs, remarquons que pour tout x ∈ R∗
+, ln

′(x) =
1

x
donc pour tout k ∈ N∗, pour

tout x ∈ R∗
+, ln

(k)(x) = g(k−1)(x) =
(−1)k−1(k − 1)!

xk
.

D’après la formule de Leibniz, puisque pour tout x ∈ R∗
+, f(x) = ln(x) × g(x), f est de

classe Cn sur R∗
+ et on a pour tout x ∈ R∗

+,

f (n)(x) =
n∑

k=0

(
n

k

)
ln(k)(x)g(n−k)(x)

= ln(x)g(n)(x) +
n∑

k=1

(
n

k

)
ln(k)(x)g(n−k)(x)

=
(−1)nn! ln(x)

xn+1
+

n∑
k=1

n!

k!(n− k)!

(−1)k−1(k − 1)!

xk

(−1)n−k(n− k)!

xn−k+1

=
(−1)nn! ln(x)

xn+1
+

(−1)n−1n!
∑n

k=1
1
k

xn+1

donc pour tout n ∈ N, un = (−1)n−1n!
n∑

k=1

1

k
et vn = (−1)nn!.

Exercice 7.

1. t 7→ (2t+ 1)8

16
définie et dérivable sur R.

2. u 7→ 1

3
ln(|u|) définie sur R∗.

3. x 7→ esin(x) définie et dérivable sur R.

4. t 7→ 1

cos(t)
définie et dérivable sur

⋃
k∈Z]−

π
2
+ kπ, π

2
+ kπ[.

5. x 7→ 1

2
(ln(x))2 définie et dérivable sur R∗

+.

6. x 7→ 2e
√
x définie sur R+ et dérivable sur R∗

+.

7. u 7→ ln(ln(u)) définie et dérivable sur ]1,+∞[.

Exercice 8. Puisque f ′(a) = lim
x→a

f(x)− f(a)

x− a
> 0, on sait qu’il existe α > 0 tel que pour tout

x ∈]a, a+α],
f(x)− f(a)

x− a
> 0, ce qui implique que pour tout x ∈]a, a+α], f(x)−f(a) > 0 (car

x− a > 0).



En particulier, f(a+ α) > f(a) = 0.

De même, puisque f ′(b) = lim
x→a

f(x)− f(b)

x− b
> 0, on sait qu’il existe β > 0 tel que pour tout

x ∈ [b − β, b[,
f(x)− f(b)

x− b
> 0, ce qui implique que pour tout x ∈ [b − β, b[, f(x) − f(b) < 0

(car x− b < 0).
En particulier, f(b− β) < f(b) = 0.
Puisque f est continue (car dérivable) sur [a, b], que f(a + α) > 0 et f(b − β) < 0, on déduit
du théorème des valeurs intermédiaires qu’il existe c2 entre a + α et b − β, donc c2 ∈]a, b[ tel
que f(c2) = 0.
Puisque f est continue sur [a, c2], dérivable sur ]a, c2[, telle que f(a) = f(c2) = 0, on déduit du
théorème de Rolle qu’il existe c1 ∈]a, c2[ tel que f ′(c1) = 0.
De même, puisque f est continue sur [c2, b], dérivable sur ]c2, b[, telle que f(b) = f(c2) = 0, on
déduit du théorème de Rolle qu’il existe c3 ∈]c2, b[ tel que f ′(c2) = 0.
On a donc bien a < c1 < c2 < c3 < b tel que f(c2) = f ′(c1) = f ′(c3) = 0.

Exercice 9.

1. Posons pour tout x ∈ [a, b], h(x) = g(x)(f(b)− f(a))− f(x)(g(b)− g(a)).

La fonction h est continue sur [a, b] et dérivable sur ]a, b[ car f et g le sont.

De plus, on a h(a) = g(a)f(b) − f(a)g(b) = h(b) donc d’après le théorème de Rolle, il
existe c ∈]a, b[ tel que h′(c) = 0.

Or, h′(c) = g′(c)(f(b)− f(a))− f ′(c)(g(b)− g(a)) donc

g′(c)(f(b)− f(a)) = f ′(c)(g(b)− g(a)).

2. (a) Montrons que pour tout x ∈]a, b], g(x) ̸= 0.

S’il existait x ∈]a, b] tel que g(x) = 0, d’après le théorème de Rolle, il existerait
c ∈]a, x[ tel que g′(c) = 0, ce qui est absurde.

Donc pour tout x ∈]a, b], g(x) ̸= 0.

(b) Soit x ∈]a, b]. D’après la question précédende, il existe cx ∈]a, x[ tel que
g′(cx)(f(x)− f(a)) = f ′(cx)(g(x)− g(a)),

d’où
f(x)

g(x)
=

f ′(cx)

g′(cx)
puisque f(a) = g(a) = 0.

Or, puisque pour tout x ∈]a, b], a < cx < x, on a d’après le théorème des gendarmes,

lim
x→a

cx = a. Par ailleurs, on sait que lim
x→a

f ′(x)

g′(x)
= l, donc par composition de limites,

on obtient lim
x→a

f ′(cx)

g′(cx)
= l, d’où lim

x→a

f(x)

g(x)
= l.

Exercice 10. Posons g : x 7→ ex(f ′(x)− f(x)). Puisque f est deux fois dérivable sur [a, b], on
en déduit que g est dérivable sur [a, b] donc continue sur [a, b] et dérivable sur ]a, b[.
Par ailleurs, g(a) = ea(f ′(a)− f(a)) = 0 et g(b) = eb(f ′(b)− f(b)) = 0.
D’après le théorème de Rolle, on en déduit qu’il existe c ∈]a, b[ tel que g′(c) = 0.
Or, g′(c) = ec(f ′(c)−f(c)+f ′′(c)−f ′(c)) = ec(f ′′(c)−f(c)) = 0. Puisque ec ̸= 0, ceci implique
que f ′′(c)− f(c) = 0, d’où f(c) = f ′′(c).

Exercice 11. Posons pour tout x ∈ [a, b], g(x) =
f(x)

x
, ce qui est légitime car [a, b] ⊂ R∗

+. La

fonction g est continue sur [a, b] et dérivable sur ]a, b[ car f et x 7→ x le sont.
Par ailleurs, g(a) = g(b) = 0 car f(a) = f(b) = 0 donc d’après le théorème de Rolle, il existe
c ∈]a, b[ tel que g′(c) = 0.

Or, g′(c) =
cf ′(c)− f(c)

c2
= 0 donc cf ′(c)− f(c) = 0, i.e. f ′(c) =

f(c)

c
, car c ̸= 0.



Exercice 12. Soient l et l′ deux réels tels que lim
x→+∞

f(x) = l et lim
x→+∞

f ′(x) = l′.

Supposons par l’absurde que l′ ̸= 0. Dans un premier temps, on suppose l′ > 0.
Puisque lim

x→+∞
f ′(x) = l′ > 0, il existe A > 0 tel que pour tout x > A, f ′(x) > l′

2
.

Soit x > A. Puisque f est continue sur [A, x] et dérivable sur ]A, x[, d’après le théorème des

accroissements finis, il existe c ∈]A, x[ tel que f(x)− f(A) = f ′(c)(x− A) >
l′

2
(x− A).

Ainsi, pour tout x > A, f(x) > f(A)+
l′

2
(x−A). Puisque l′ > 0, lim

x→+∞
f(A)+

l′

2
(x−A) = +∞,

donc par comparaison, on en déduit que lim
x→+∞

f(x) = +∞, ce qui contredit notre hypothèse

de départ.
De même, si l′ < 0, alors lim

x→+∞
−f ′(x) = −l′ > 0 donc d’après ce qui précède, on en déduit que

lim
x→+∞

−f(x) = +∞, d’où lim
x→+∞

f(x) = −∞, ce qui est de nouveau absurde.

Il est donc absurde de supposer l′ ̸= 0.
On a donc nécessairement l′ = 0, i.e. lim

x→+∞
f ′(x) = 0.

Autre méthode (due à Rose) :
Pour tout x ∈ R, d’après le théorème des accroissements finis appliqué sur [x, x + 1], il existe

cx ∈]x, x+ 1[ tel que f ′(cx) =
f(x+ 1)− f(x)

x+ 1− x
= f(x+ 1)− f(x).

On a d’une part, lim
x→+∞

f(x+ 1)− f(x) = l − l = 0.

D’autre part, lim
x→+∞

cx = +∞ (car cx > x), donc par composition de limites, lim
x→+∞

f ′(cx) = l′.

Par unicité de la limite, l′ = 0.

Exercice 13. Posons pour tout x ∈ [a, b], g(x) = f(c)(x − a)(x − b) − (c − a)(c − b)f(x).
Puisque f ∈ C2([a, b],R), on a également g ∈ C2([a, b],R).
On a g(a) = g(c) = g(b) = 0. En appliquant le théorème de Rolle sur [a, c] et sur [c, b], on en
déduit qu’il existe α ∈]a, c[ et β ∈]c, b[ tels que g′(α) = g′(β) = 0.
Puisque g′ est continue sur [α, β] et dérivable sur ]α, β[, on peut de nouveau appliquer le
théorème de Rolle sur [α, β] et on en déduit qu’il existe γ ∈]α, β[⊂]a, b[ tel que g′′(γ) = 0.
Or, pour tout x ∈ [a, b],

g′(x) = f(c)(2x− (a+ b))− (c− a)(c− b)f ′(x) et g′′(x) = 2f(c)− (c− a)(c− b)f ′′(x)

donc

g′′(γ) = 0 ⇔ f(c) =
(c− a)(c− b)

2
f ′′(γ).

Exercice 14.

1. (a) La fonction f est dérivable sur R et on a pour tout x ∈ R, f ′(x) = −2

5
x. On a donc

le tableau de variation suivant :

x

f ′(x)

f

−∞ 0 +∞

+ 0 −

−∞−∞

4

5

4

5 +∞+∞

La fonction f est continue et décroissante sur [0, 1] donc

f([0, 1]) = [f(1), f(0)] =

[
3

5
,
4

5

]
⊂ [0, 1].



(b) On a

f(x) = x ⇔ 1

5
(4− x2) = x ⇔ x2 + 5x− 4 = 0 ⇔ x =

−5−
√
41

2
ou x =

−5 +
√
41

2
.

(c) On a pour tout x ∈ [0, 1], |f ′(x)| =
∣∣∣∣−2

5
x

∣∣∣∣ = 2

5
|x| ⩽ 2

5
.

2. (a) l =

√
41− 5

2
.

(b) Montrons par récurrence que pour tout n ∈ N, un ∈ [0, 1]. •Initialisation :

u0 ∈ [0, 1].

•Hérédité : Soit n ∈ N. On suppose que un ∈ [0, 1].

On a un+1 = f(un) ∈ f([0, 1]) ⊂ [0, 1] donc un+1 ∈ [0, 1] ce qui prouve la propriété
au rang n+ 1 et achève la récurrence.

Ainsi, pour tout n ∈ N, un ∈ [0, 1].

(c) Soit n ∈ N. On a |un+1 − l| = |f(un)− f(l)|.
Puisque un ∈ [0, 1] et l ∈ [0, 1], d’après le théorème des accroissements finis, il existe
c ∈]0, 1[ tel que f(un)− f(l) = f ′(c)(un − l) i.e. |un+1 − l| = |f ′(c)||un − l|.

Or, puisque c ∈]0, 1[, on a |f ′(c)| ⩽ 2

5
, d’où |un+1 − l| ⩽ 2

5
|un − l|, et ce pour tout

n ∈ N.

(d) Montrons par récurrence que pour tout n ∈ N, |un − l| ⩽
(
2

5

)n

.

Initialisation : Pour n = 0, puisque u0 ∈ [0, 1] et que l ∈ [0, 1], |u0− l| ⩽ 1 =

(
2

5

)0

.

Hérédité : Soit n ∈ N tel que |un − l| ⩽
(
2

5

)n

.

D’après la question précédente, |un+1 − l| ⩽ 2

5
|un − l| ⩽ 2

5

(
2

5

)n

=

(
2

5

)n+1

, ce qui

prouve la propriété au rang n+ 1 et achève la récurrence.

(e) Pour tout n ∈ N, 0 ⩽ |un − l| ⩽
(
2

5

)n

. Puisque

∣∣∣∣25
∣∣∣∣ < 1, alors lim

n→+∞

(
2

5

)n

= 0.

D’après le théorème des gendarmes, lim
n→+∞

|un − l| = 0 donc lim
n→+∞

un = l.

(f) D’après la question d, il suffit que(
2

5

)n

⩽ 10−10 ⇔ en ln( 2
5) ⩽ 10−10 ⇔ n ln

(
2

5

)
⩽ −10 ln(10) ⇔ n ⩾ −10 ln(10)

ln
(
2
5

)
car ln

(
2

5

)
< 0.

Puisque −10 ln(10)

ln
(
2
5

) ≃ 25, 12, le n0 cherché est n0 = 26.

Sinon, on peut aussi utiliser le script suivant en Python :

n=0

while (2/5)**n>10**(-10):

n+=1

print(n)



Exercice 15.

1. (a) Puisque f : [a, b] → [a, b] est continue, on sait que f admet un point fixe l sur [a, b].
Montrons que (xn)n∈N converge vers l.

Puisque f est k-lipschitzienne, on a |u1− l| = |f(u0)−f(l)| ⩽ k|u0− l|, puis |u2− l| =
|f(u1)− f(l)| ⩽ k|u1 − l| ⩽ k2|u0 − l|.
Par récurrence immédiate, on montre que pour tout n ∈ N, |un − l| ⩽ kn|u0 − l|.
Puisque 0 ⩽ k < 1, on a lim

n→+∞
kn = 0, donc par comparaison, on en déduit que

lim
n→+∞

|un − l| = 0, i.e. lim
n→+∞

un = l.

(b) Si f admettait un autre point fixe l′, la même preuve que celle en question précédente
montrerait que lim

n→+∞
un = l′ d’où l = l′ par unicité de la limite, ce qui prouve l’unicité

du point fixe de f.

2. D’après la question 1, fp admet un unique point fixe dans [a, b]. Notons-le l. Ainsi
fp(l) = l.

Montrons que l est un point fixe de f.

On a f p(f(l)) = fp+1(l) = f(fp(l)) = f(l) donc f(l) est un point fixe de f p. Or, le seul
point fixe de fp est l, donc f(l) = l, ce qui prouve que l est un point fixe de f.

Par ailleurs, si f admettait un autre point fixe l′, on aurait fp(l′) = l′ donc par unicité
du point fixe de f, on aurait l = l′, ce qui prouve l’unicité du point fixe de f.

Exercice 16. Supposons par l’absurde que f n’est pas constante. Il existe alors (a, b) ∈ R2

avec a < b tel que f(a) ̸= f(b).
• Supposons que f(a) < f(b). D’après l’inégalité des trois pentes, on a pour tout x > b,

f(b)− f(a)

b− a
⩽

f(x)− f(b)

x− b

d’où f(x) ⩾ (x− b)
f(b)− f(a)

b− a
+ f(b).

Puisque
f(b)− f(a)

b− a
> 0, on a lim

x→+∞
(x − b)

f(b)− f(a)

b− a
+ f(b) = +∞ donc lim

x→+∞
f(x) = +∞

par comparaison, ce qui est absurde puisque f est majorée.
• Supposons que f(a) > f(b). D’après l’inégalité des trois pentes, on a pour tout x < a,

f(a)− f(x)

a− x
⩽

f(b)− f(a)

b− a

d’où f(x) ⩾ (a− x)
f(a)− f(b)

b− a
+ f(a).

Puisque
f(a)− f(b)

b− a
> 0, on a lim

x→−∞
(a− x)

f(a)− f(b)

b− a
+ f(a) = +∞ donc lim

x→−∞
f(x) = +∞

par comparaison, ce qui est absurde puisque f est majorée.
On en conclut que f est nécessairement constante sur R.

Exercice 17.

1. Puisque f est convexe sur R+, l’application x 7→ f(x)− f(0)

x− 0
est croissante sur R.

D’après le théorème de la limite monotone, on en déduit que lim
x→+∞

f(x)− f(0)

x
= l

existe dans R ∪ {+∞}.

Puisque lim
x→+∞

f(0)

x
= 0, on en déduit par somme de limites que

lim
x→+∞

f(x)

x
= lim

x→+∞

f(x)− f(0)

x
+ lim

x→+∞

f(0)

x
= l.



2. Soit g : x 7→ f(x)−lx. La fonction g est convexe sur R+ comme somme de deux fonctions
convexes.

Par hypothèse, lim
x→+∞

g(x)

x
= lim

x→+∞

f(x)

x
− l = 0.

Montrons que g est décroissante sur R+. Soient (a, b) ∈ (R+)
2 avec a < b.

Puisque g est convexe sur R+, alors la fonction h : x 7→ g(x)− g(a)

x− a
est croissante.

Or, puisque lim
x→+∞

g(x)

x
= 0, on en déduit que lim

x→+∞
h(x) = 0. Puisqu’elle est croissante,

on a alors pour tout x ∈ R+ \ {a}, h(x) ⩽ 0.

En particulier, h(b) =
g(b)− g(a)

b− a
⩽ 0. Puisque a < b, on en déduit que g(b) ⩽ g(a), ce

qui prouve que g est décroissante sur R+.

D’après le théorème de la limite monotone, on en déduit que lim
x→+∞

g(x) = lim
x→+∞

f(x)−lx

existe dans R ∪ {−∞}.


